Abstract:
The purpose of the present invention is to provide a manufacturing method of a lithium iron phosphate cathode active material, a lithium iron phosphate cathode active material manufactured thereby, and a secondary battery manufactured using the same. The present invention provides a manufacturing method of a lithium iron phosphate cathode active material, which comprises a step of manufacturing a mixed solution by mixing a lithium precursor, an iron precursor and a phosphate precursor at 2.5-3.5:1:1.5-2.5 of the mole ratio, and dissolving in a solvent including a dispersant (step 1); and a step of heating the mixed solution of step 1 by using microwaves. Further, the present invention provides a crystalline lithium iron phosphate cathode active material, which is manufactured by the manufacturing method, and comprises first particles having a particle size of 30-200 nm, and second particles having a particle size of 1-5 μm, wherein the second particles include multiple first particles, and have a spherical shape. The present invention provides a crystalline lithium iron phosphate cathode active material, which is manufactured by the manufacturing method, and comprises first particles having a particle size of 50-400 nm, and second particles having a particle size of 1-5 μm, wherein the second particles include multiple first particles, and have a rod shape. The lithium iron phosphate cathode active material manufactured according to the present invention consists of first particles with a nanometer size, and second particles with a micrometer size, thereby enhancing the electric conductivity, increasing the energy density per volume, and improving the electrode manufacture processibilty. Furthermore, the lithium iron phosphate cathode active material can enhance the performance by improving the size and coagulation of particles by adjusting the mixing ratio of raw materials.
Abstract:
The present invention relates to a multi-branched acrylic crosslinking agent and phosphate-based plasticizer-containing semi-interpenetrating polymer network (IPN) solid polymer electrolyte composition. The solid polymer electrolyte composition according to the present invention reduces the crystallization of an ethylene oxide group on the side chain of the plasticizer even at low temperatures, thereby improving ion conductivity, electrochemical stability and thermal stability. Therefore, the polymer electrolyte composition can be used as a solid polymer electrolyte for a lithium-polymer secondary battery, a dye-sensitized solar cell, and a fuel cell. [Reference numerals] (AA) Ion conduction rate (S cm^-1);(BB) Example 1-1;(CC) Example 1-2;(DD) Example 1-3;(EE) Example 1-4;(FF) Temperature (1000K^-1)
Abstract translation:本发明涉及多支链丙烯酸交联剂和含磷酸盐系增塑剂的半互穿聚合物网络(IPN)固体高分子电解质组合物。 根据本发明的固体高分子电解质组合物即使在低温也降低了增塑剂侧链上的环氧乙烷基团的结晶,从而提高了离子传导性,电化学稳定性和热稳定性。 因此,聚合物电解质组合物可以用作锂聚合物二次电池,染料敏化太阳能电池和燃料电池的固体聚合物电解质。 (AA)离子传导率(S cm -1);(BB)实施例1-1;(CC)实施例1-2;(DD)实施例1-3;(EE)实施例1-4; (FF)温度(1000K ^ -1)
Abstract:
본 발명은 하기 화학식 1로 표시되는 실록산 에폭시 화합물을 가교제로 함유하는 고분자 전해질 조성물 및 이를 이용한 리튬-고분자 이차 전지에 관한 것으로 실록산계 에폭시 화합물을 도입함으로써 우수한 기계적 물성을 갖아 양극 및 음극의 단락을 방지할 수 있고, 상온에서의 이온전도도와 전기화학적 안정성이 개선된 고분자 전해질 조성물 및 이를 이용한 리튬-고분자 이차 전지에 관한 것이다. [화학식 1]
[상기 화학식 1에서, R 1 내지 R 8 은 서로 독립적으로 수소 또는 (C1-C10)알킬이고, n은 1 내지 10의 정수이다.] 본 발명에 따른 고분자 전해질 조성물은 소형 또는 대형 리튬-고분자 이차 전지에 모두 적용 가능한 효과가 있다.
Abstract:
PURPOSE: An inorganic semiconductor ink composite and an inorganic semiconductor thin film manufactured through the same are provided to reduce process costs by manufacturing an oxidation zinc thin film by using a solution process. CONSTITUTION: An inorganic semiconductor ink composite comprises a zinc oxide precursor solution, zinc oxide nano particle, and a dispersion solvent. The zinc oxide nano particle about the zinc oxide precursor solution is 0.1 to 50weight%. The size of the zinc oxide nano particle is 5nm to 20nm. The zinc oxide nano particle is dispersed into 0.1 to 10weight% about the dispersion solvent. The dispersion solvent is selected in a group consisting of ammonium hydroxide, isopropyl alcohol, ethanolamine, ethanol, and methanol.
Abstract:
PURPOSE: A perfluorinated polyvalent acrylic compound having phosphate and a photo-curable composition containing the same are provided easily make polymeric photo-curable film having high thermal stability. CONSTITUTION: A perfluorinated polyvalent acrylic compound has a phosphate structure of chemical formula 1. A method for preparing the perfluorinated polyvalent acrylic compound comprises: a step of reacting acryloylchloride derivative of chemical formula 3 with perfluorinated diol compound of chemical formula 2 to obtain acryl substituted alcohol derivative of chemical formula 4; and a step of reacting the compound of chemical formula 4 with phosphorusoxychloride under the presence of base to obtain perfluorinated polyvalent acryl-based compound. The photo-curable composition contains the perfluorinated polyvalent acrylic compound and photoinitiator.
Abstract:
본 발명은 금속촉매가 함유된 고분자를 이용한 중공형 그라파이트 나노카본 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 무기물, 금속 촉매전구체, 하이드록시기를 갖는 화합물 및 알데히드기를 갖는 화합물 등이 혼합된 수용액에서 산성 조건하에서 하이드록시기를 갖는 화합물 및 알데히드기를 갖는 화합물 사이에서 고분자화반응을 수행한 후, 탄화 및 염기, 산처리 과정으로, 내부는 중공이고, 외부는 그라파이트 층으로 구성된 중공형 그라파이트 나노카본으로, 우수한 결정성, 높은 전기전도성, 중기공 영역의 발달 및 친수성 표면 작용기 등을 나타내어 연료전지 촉매지지체, 수퍼커패시터의 전극 재료, 이차전지의 전극 물질, 흡착제, 전자이미터, 나노복합체 등의 적용성이 우수한 금속촉매가 함유된 고분자를 이용한 중공형(hㅐllow) 그라파이트 나노카본 및 이의 제조방법에 관한 것이다. 그라파이트, 나노카본, 금속촉매, 하이드록시기, 연료전지, 담체