Abstract:
Orthodontic systems and related methods are disclosed for designing and providing improved or more effective tooth moving systems for eliciting a desired tooth movement and/or repositioning teeth into a desired arrangement. Methods and orthodontic systems include the generation of an overcorrection in the tooth-receiving cavities of an appliance worn in the dentition. The overcorrection may provide an improved and more accurately applied force or moment applied to a tooth. The overcorrected force or moment can move a tooth closer to a desired position than if not overcorrected as sufficient force can still applied to the tooth as it gets closer to the desired position. The overcorrected force or moment may also better target the root of the tooth where the biological response to tooth movement occurs. The overcorrection may be calculated in various ways as described herein.
Abstract:
A processing device receives a 3D model for at least one tooth of a patient. The 3D model may include a 3D crown component and a 3D root component. The 3D crown component may be from a scan and the 3D root component may be from a template. The processing device receives a 2D x-ray image of the at least one tooth. The 2D x-ray image may have been created by an x-ray imaging device having one or more parameters. The processing device generates a scan model representing an initial estimate of the one or more parameters of the x-ray imaging device. The processing device further generates a 2D contour of the at least one tooth based on projecting the 3D model onto a plane using the scan model. The processing device overlays the 2D contour onto the 2D x-ray image. The processing device further adjusts the 2D contour to cause a first crown component of the 2D contour to approximately align to a second crown component of the 2D x-ray image. The processing then calibrates the scan model based on data obtained from adjusting the 2D contour.
Abstract:
A method includes to receive, via a computing device, data representing a plurality of teeth, identify data indicating which of the plurality of teeth are unerupted or erupting, predict at least one characteristic of a tooth of the unerupted or erupting teeth after they have fully erupted using one or more tooth eruption prediction factors, generate new data representing the unerupted or erupting teeth in multiple states of eruption based upon the predicted at least one characteristic of the fully erupted teeth, and generate a series of incremental tooth arrangements with the new data to define a proposed orthodontic treatment based on the new data representing the unerupted or erupting teeth in multiple states of eruption.
Abstract:
Orthodontic systems and related methods are disclosed for designing and providing improved or more effective tooth moving systems for eliciting a desired tooth movement and/or repositioning teeth into a desired arrangement. Methods and orthodontic systems of the invention include tooth attachments having improved or optimized parameters selected or modified for more optimal and/or effective application of forces for a desired/selected orthodontic movement. Attachments of the present invention can be customized to a particular patient (e.g., patient-customized), a particular movement, and/or a sub-group or sub-set of patients, and configured to engage an orthodontic tooth positioning appliance worn by a patient, where engagement between the attachment and orthodontic appliance results in application of a repositioning force or series/system of forces to the tooth having the attachment and will generally elicit a tooth movement.
Abstract:
System and method for developing a treatment plan for achieving a treatment goal including creating a virtual model of a dental patient's dentition; transforming the virtual model of the dentition using virtual prosthodontics to facilitate achievement of the treatment goal; transforming the virtual model of the dentition using virtual orthodontics to facilitate achievement of the treatment goal; iterating on the transforming steps until substantially achieving the treatment goal; and generating an orthodontic treatment plan and a prosthodontic treatment plan based upon the substantially achieved treatment goal.
Abstract:
In accordance with various aspects of the present invention, systems and methods for representation, modeling and/or application of pontic geometry of teeth to facilitate orthodontic treatment are provided. Such systems and methods for representation, modeling and application of pontic geometry of teeth can automatically facilitate a changeable and stage-dependent pontic geometry that provides various advantages over conventional methods for providing pontics. In accordance with an exemplary embodiment, a system and method for representation, modeling and/or application of pontic geometry automatically detects for the potential location for one or more pontics, i.e., for spaces between the teeth of a patient. Once a desired location for a pontic is automatically determined, an original pontic geometry is automatically generated. Thereafter, stage dependent pontic geometries are automatically generated and positioned during the stages of treatment if pontic is desirable.
Abstract:
Method and system for providing dynamically generated orthodontic profile and associated treatment information including receiving an orthodontic condition and one or more related treatment goal options, retrieving a predetermined set of parameters associated with the orthodontic condition and the one or more related treatment goal options, determining a weighted parameter associated with each of the one or more treatment goal options for the orthodontic condition, and generating treatment plan information for the orthodontic condition based on the determined weighted parameter are provided.
Abstract:
In accordance with various aspects of the present invention, system and method for modeling and application of interproximal reduction (IPR) of teeth to facilitate orthodontic treatment is provided. In accordance with an exemplary embodiment, a system and method for modeling and application of IPR are configured within a treatment methodology that initially determines whether stripping is needed for two neighboring teeth. If stripping is necessary, the exemplary method for modeling and application of IPR is conducted. In an exemplary embodiment, a stripping plane or other surface is constructed to determine the amount and region of stripping for two neighboring teeth, in other words, the volume to be removed between two neighboring teeth. After stripping of the tooth, the tooth geometry can be reconstructed to enable application of the IPR tooth model, such as enabling the clinician to utilize the IPR tooth model for teeth movement planning.
Abstract:
In one embodiment, acquiring a digital model of a patient's teeth, automatically detecting reference data or features based on the digital model, and automatically computing dental measurements based on said reference data or features, where the dental measurements are associated with an occlusal characteristic of the patient are disclosed.