Abstract:
A method includes to receive, via a computing device, data representing a plurality of teeth, identify data indicating which of the plurality of teeth are unerupted or erupting, predict at least one characteristic of a tooth of the unerupted or erupting teeth after they have fully erupted using one or more tooth eruption prediction factors, generate new data representing the unerupted or erupting teeth in multiple states of eruption based upon the predicted at least one characteristic of the fully erupted teeth, and generate a series of incremental tooth arrangements with the new data to define a proposed orthodontic treatment based on the new data representing the unerupted or erupting teeth in multiple states of eruption.
Abstract:
A series of appliances including a first shell and a second shell can be designed to incrementally implement a treatment plan. The first and second shells can have cavities designed to receive teeth of a jaw. A first number of bite adjustment structures can be formed of a same material as the first shell, extending therefrom and designed to interface with teeth of a second jaw. The first number of bite adjustment structures can have a first shape and location specific to a first stage of the treatment plan. A second number of bite adjustment structures can be formed of a same material as the second shell, extending therefrom and designed to interface with teeth of the second jaw. The second number of bite adjustment structures can have a second shape and location, different than the first shape and location, specific to a second stage of the treatment plan.
Abstract:
A non-transitory computing device readable medium storing instructions executable by a processor to cause a computing device to create a treatment plan based on a virtual model of a jaw of a patient, wherein the treatment plan includes use of a dental appliance comprising a shell having a first surface that defines a plurality of cavities shaped to receive a plurality of teeth of the patient; modify the virtual model of the shell in a first configuration to include a virtual binding structure on a second surface opposite the first surface of the dental appliance wherein the binding structure is shaped to receive a specialized feature that provide one or more force characteristics to the jaw, select a particular specialized feature as an attachment to the dental appliance; and adjust the virtual model of the jaw from a first configuration to a second configuration, according to the treatment plan, based at least in part on a modeled force provided by the combination of the virtual binding structure and the particular specialized feature.
Abstract:
A method includes to receive, via a computing device, data representing a plurality of teeth, identify data indicating which of the plurality of teeth are unerupted or erupting, predict at least one characteristic of a tooth of the unerupted or erupting teeth after they have fully erupted using one or more tooth eruption prediction factors, generate new data representing the unerupted or erupting teeth in multiple states of eruption based upon the predicted at least one characteristic of the fully erupted teeth, and generate a series of incremental tooth arrangements with the new data to define a proposed orthodontic treatment based on the new data representing the unerupted or erupting teeth in multiple states of eruption.
Abstract:
A series of appliances including a first shell and a second shell can be designed to incrementally implement a treatment plan. The first and second shells can have cavities designed to receive teeth of a jaw. A first number of bite adjustment structures can be formed of a same material as the first shell, extending therefrom and designed to interface with teeth of a second jaw. The first number of bite adjustment structures can have a first shape and location specific to a first stage of the treatment plan. A second number of bite adjustment structures can be formed of a same material as the second shell, extending therefrom and designed to interface with teeth of the second jaw. The second number of bite adjustment structures can have a second shape and location, different than the first shape and location, specific to a second stage of the treatment plan.