Abstract:
Methods for designing and fabrication of a series of apparatuses for expanding a patient's palate ("palatal expanders"). In particular, described herein are methods and apparatuses for forming palatal expanders, including rapid palatal expanders, as well as series of palatal expanders formed as described herein and apparatuses for designing and fabricating them.
Abstract:
Methods and apparatuses for 3D imaging (including 3D optical coherence tomography imaging) to measure the shape of orthodontic aligners, teeth, and other oral structures simultaneously, in-vivo or in-vitro. These methods and apparatuses may be used to determine contact locations of aligners with teeth and/or teeth with other teeth with very high precision, including determining the size of gaps where they are not in contact. These measurements may be used design, modify or replace an aligner and/or to verify aligner fit. 3D models of the whole aligner and teeth may be generated.
Abstract:
The present disclosure provides methods, computing device readable medium, devices, and systems having a dental attachment formation structures. One dental appliance includes a body having a first surface shaped to abut an exterior surface of a tooth and a well portion of the first surface shaped to form an attachment that is to be attached to the exterior surface of the tooth, a release layer formed over a surface of the well to allow the attachment to be removed from the well, and a curable material that is used to form the attachment positioned within the well.
Abstract:
The present disclosure includes computing device related, systems, and methods for identifying force placed on a tooth are described herein. One method includes receiving initial orthodontic data (lOD) including teeth data; creating a virtual set of teeth from the lOD; receiving dental appliance information including at least one of dental appliance material properties and characteristics; virtually placing a dental appliance, formed from the dental appliance information, onto the virtual set of teeth; and determining one or more forces applied to the teeth based on information from the lOD and dental appliance information.
Abstract:
Dental appliances having modified gingival edge profiles for optimizing orthodontic tooth movement. In some cases, at least a portion of the gingival edge is lengthened to extend past the gumline of the patient, thereby directing forces closer to a center of resistance of one or more teeth. In some cases, at least a portion of the gingival edge is shortened with respect to the gumline of the patient, thereby directing forces farther from a center of resistance of one or more teeth. The change in the force system of the dental appliance due to the gingival edge modification can be tailored and tuned for specific tooth movements.
Abstract:
An orthodontic alignment device can have a palatal contour anchorage (PCA) feature that generally matches the shape of the patient's hard pallet. This PCA feature may be built slightly off-set to deliberately push against the patient's palate and/or gingiva to provide anchorage support of staged translation of the teeth. By transferring the required anchorage away from the teeth and onto the palate, through the PCA feature, the adjacent teeth are no longer subjected to unwanted side effects of reaction forces.
Abstract:
Orthodontic systems and related methods are disclosed for designing and providing improved or more effective tooth moving systems for eliciting a desired tooth movement and/or repositioning teeth into a desired arrangement. Methods and orthodontic systems include the generation of an overcorrection in the tooth-receiving cavities of an appliance worn in the dentition. The overcorrection may provide an improved and more accurately applied force or moment applied to a tooth. The overcorrected force or moment can move a tooth closer to a desired position than if not overcorrected as sufficient force can still applied to the tooth as it gets closer to the desired position. The overcorrected force or moment may also better target the root of the tooth where the biological response to tooth movement occurs. The overcorrection may be calculated in various ways as described herein.
Abstract:
Orthodontic systems and related methods are disclosed for designing and providing improved or more effective tooth moving systems for eliciting a desired tooth movement and/or repositioning teeth into a desired arrangement. Methods and orthodontic systems of the invention include tooth attachments having improved or optimized parameters selected or modified for more optimal and/or effective application of forces for a desired/selected orthodontic movement. Attachments of the present invention can be customized to a particular patient (e.g., patient-customized), a particular movement, and/or a sub-group or sub-set of patients, and configured to engage an orthodontic tooth positioning appliance worn by a patient, where engagement between the attachment and orthodontic appliance results in application of a repositioning force or series/system of forces to the tooth having the attachment and will generally elicit a tooth movement.
Abstract:
The present disclosure includes computing device related, systems, and methods for identifying force placed on a tooth are described herein. One method includes receiving initial orthodontic data (IOD) including teeth data; creating a virtual set of teeth from the IOD; receiving dental appliance information including at least one of dental appliance material properties and characteristics; virtually placing a dental appliance, formed from the dental appliance information, onto the virtual set of teeth; and determining one or more forces applied to the teeth based on information from the IOD and dental appliance information.