Abstract:
A capacitive sensor including a housing having a hermetically sealed cavity, a plate in the cavity, a diaphragm forming a part of the cavity and spaced from the plate, a conductive layer on the first diaphragm, and a second conductive layer on the plate, the first and second conductive layers being the electrodes of a capacitor whose capacitance varies with the position of the diaphragm relative to the plate.
Abstract:
A method of forming an inertial sensor provides 1) a device wafer with a two-dimensional array of inertial sensors and 2) a second wafer, and deposits an alloy of aluminum/ germanium onto one or both of the wafers. The alloy is deposited and patterned to form a plurality of closed loops. The method then aligns the device wafer and the second wafer, and then positions the alloy between the wafers. Next, the method melts the alloy, and then solidifies the alloy to form a plurality of conductive hermetic seal rings about the plurality of the inertial sensors. The seal rings bond the device wafer to the second wafer. Finally, the method dices the wafers to form a plurality of individual, hermetically sealed inertial sensors.
Abstract:
A microchip has a bonding material that bonds a first substrate to a second substrate. The bonding material has, among other things, a rare earth metal and other material.
Abstract:
A MEMS sensor includes a substrate having a MEMS structure movably attached to the substrate, a cap attached to the substrate and encapsulating the MEMS structure, and an electrode formed on the cap that senses movement of the MEMS structure.
Abstract:
This invention disclosed a process for forming durable anti-stiction surfaces on micromachined structures while they are still in wafer form (i.e., before they are separated into discrete devices for assembly into packages). This process involves the vapor deposition of a material to create a low stiction surface. It also discloses chemicals which are effective in imparting an anti-stiction property to the chip. These include polyphenylsiloxanes, silanol terminated phenylsiloxanes and similar materials.
Abstract:
A capacitive sensor including a housing having a hermetically sealed cavity, a plate in the cavity, a diaphragm forming a part of the cavity and spaced from the plate, a conductive layer on the first diaphragm, and a second conductive layer on the plate, the first and second conductive layers being the electrodes of a capacitor whose capacitance varies with the position of the diaphragm relative to the plate.
Abstract:
An in-situ cap for an integrated circuit device (10) such as a micromachined device and a method of making such a cap (40) by fabricating an integrated circuit element (122) on a substrate (14) ; forming a support layer (124) over the integrated circuit element (122) and forming a cap structure (22) in the support layer (124) covering the integrated circuit element (122).