Abstract:
A display device (10) has a thin-film transistor (TFT) substrate ("layer" 14B). One or more holes (50A) in the TFT substrate act as ducts for conductive bridges (56) connecting display circuitry (53) on the TFT substrate to a printed cirucit (58) circuitry located underneath the substrate. The conductive bridges may be formed using wire bonding. The wire bonds may be encapsulated with potting material to improve their reliability and to increase the resiliency of the display. Display signal lines fed through the holes (50A) in the TFT substrate, run along the underside of the display (14) so that the amount of space required for display circuitry at the display edge is reduced. Alternatively, contact is achieved by depositing a conducting material in the hole, in conjunction with wire bonds and flexible circuits. Display types can include LCD, OLED, plasma, electronic ink, electrochromic, and electrowetting technologies.
Abstract:
Split jack assemblies are constructed with a tubeless pin block. Elimination (or split) of the tube, or more particularly, a tube that is an integrally formed part of the pin block form the pin block allows for the use of a tubeless pin block design that results in a jack assembly having smaller overall dimensions than a conventional jack assembly constructed to accommodate a plug of the same dimensions. The tubeless pin block can be used in conjunction with a tube sleeve or with a curved surface of a housing for an electronic device, or both to provide a plug receptacle of the split jack assembly.
Abstract:
Display layers and touch sensor layers may be overlapped by enclosure walls in an electronic device. The electronic device may have a front wall and opposing rear wall and curved sidewalls. The front wall and the curved sidewalls may be formed from a glass layer or other transparent member. A touch sensor layer and display layer may extend under the glass layer with curved sidewalls. A touch sensor layer may also extend under the opposing rear wall. A foldable electronic device may have a flexible transparent wall portion that joins planar transparent walls. Components may be interposed between the transparent planar walls and opaque walls. Display and touch layers may be overlapped by the transparent walls and the transparent flexible wall portion. Touch sensor structures may also be overlapped by the opaque walls.
Abstract:
An electronic device is provided with a display and a light sensor that receives light that passes through the display. The display includes features that increase the amount of light that passes through the display. The features may be translucency enhancement features that allow light to pass directly through the display onto a light sensor mounted behind the display or may include a light-guiding layer that guides light through the display onto a light sensor mounted along an edge of the display. The translucency enhancement features may be formed in a reflector layer or an electrode layer for the display. The translucency enhancement features may include microperforations in a reflector layer of the display, a light-filtering reflector layer of the display, or a reflector layer of the display that passes a portion of the light and reflects an additional portion of the light.
Abstract:
An electronic device (10) is provided with a display (14) and a solar cell ambient light sensor (40) that receives light through a portion of the display. The solar cell ambient light sensor may include one or more thin-film photovoltaic cells. A voltage that accumulates within the thin-film photovoltaic cell in response to ambient light is sampled and converted into ambient light data. The device includes control circuitry (42, 48) that modifies the intensity of display light generated by the display based on the ambient light data from the photovoltaic cell. The solar cell ambient light sensor is attached to a transparent cover layer, a color filter layer, or any other layer of the display. When the accumulated voltage is not being sampled for ambient light measurements, the voltage may be used to provide charge to a battery (54) in the device.
Abstract:
An electronic device may have a hollow display cover structure. The hollow display cover structure may be formed from a structure having an inner surface. The structure may be an elongated member having a longitudinal axis. A material such as sapphire, other crystalline materials, or other transparent materials may be used in forming the hollow display cover structure. A flexible display layer such as an organic light-emitting diode display layer or other flexible display structure may be wrapped around the longitudinal axis to cover the interior surface of the hollow display cover structure. The electronic device may have a touch sensor, accelerometer, gyroscope, and other sensors for gathering input such as user input. The electronic device may use one or more sensors to gather information on rotational motion of the device and can display content on the flexible display layer accordingly.
Abstract:
A display device (10) has a thin-film transistor (TFT) substrate ("layer" 14B). One or more holes (50A) in the TFT substrate act as ducts for conductive bridges (56) connecting display circuitry (53) on the TFT substrate to a printed cirucit (58) circuitry located underneath the substrate. The conductive bridges may be formed using wire bonding. The wire bonds may be encapsulated with potting material to improve their reliability and to increase the resiliency of the display. Display signal lines fed through the holes (50A) in the TFT substrate, run along the underside of the display (14) so that the amount of space required for display circuitry at the display edge is reduced. Alternatively, contact is achieved by depositing a conducting material in the hole, in conjunction with wire bonds and flexible circuits. Display types can include LCD, OLED, plasma, electronic ink, electrochromic, and electrowetting technologies.
Abstract:
Techniques are provided for removing thermal gradients from an organic light emitting diode (OLED) display (34). In one embodiment, an OLED display device (36) includes a thermally conductive layer (76) placed between electronic components housed within the device (18, 24, 26, 28) and the OLED display (34). Heat given off by the electronic components is transferred from warm to cold regions of the thermally conductive layer to create a more uniform ambient temperature across the back of the OLED display. Some embodiments indicate a position of the thermally conductive layer within layers of an OLED display stack (e.g., between a glass substrate and polyimide layer). Some embodiments include a specific range of thermal conductivities and/or thicknesses desired for the thermally conductive layer.
Abstract:
An electronic device having a housing structure that is configured to receive at least one glass cover is disclosed. The glass cover serves to cover a display assembly provided within the electronic device. The glass cover can be secured to the housing structure so as to facilitate providing a narrow border between an active display area and an outer edge of the housing structure. The enclosure for the electronic device can be thin yet be sufficiently strong to be suitable for use in electronic devices, such as portable electronic devices.