Abstract:
An apparatus comprising: a radiation receiving apparatus provided with an opening operable to receive radiation from a radiation source through the opening; wherein the radiation receiving apparatus comprises a deflection apparatus arranged to change a trajectory of a particle through the opening arriving at the radiation receiving apparatus.
Abstract:
A pellicle suitable for use with a patterning device for a lithographic apparatus. The pellicle comprising at least one breakage region which is configured to preferentially break, during normal use in a lithographic apparatus, prior to breakage of remaining regions of the pellicle. At least one breakage region comprises a region of the pellicle which has a reduced thickness when compared to surrounding regions of the pellicle.
Abstract:
A pellicle suitable for use with a patterning device for a lithographic apparatus. The pellicle comprising at least one breakage region which is configured to preferentially break, during normal use in a lithographic apparatus, prior to breakage of remaining regions of the pellicle. At least one breakage region comprises a region of the pellicle which has a reduced thickness when compared to surrounding regions of the pellicle.
Abstract:
A patterning device comprising a reflective marker, wherein the marker comprises: a plurality of reflective regions configured to preferentially reflect radiation having a given wavelength; and a plurality of absorbing regions configured to preferentially absorb radiation having the given wavelength; wherein the absorbing and reflective regions are arranged to form a patterned radiation beam reflected from the marker when illuminated with radiation, and wherein the reflective regions comprise a roughened reflective surface, the roughened reflective surface being configured to diffuse radiation reflected from the reflective regions, and wherein the roughened reflective surface has a root mean squared roughness of about an eighth of the given wavelength or more.
Abstract:
A membrane for EUV lithography, the membrane having a thickness of no more than 200 nm and including a stack having: at least one silicon layer; and at least one silicon compound layer made of a compound of silicon and an element selected from the group consisting of boron, phosphorous, bromine.
Abstract:
A lithographic apparatus including an inspection apparatus can measure the overlay error of a target in a scribelane is measured. The overlay error of the required feature in the chip area may differ from this due to, for example, different responses to the exposure process. A model is used to simulate these differences and thus a more accurate measurement of the overlay error of the feature determined.
Abstract:
In order to determine whether an exposure apparatus is outputting the correct dose of radiation and its projection system is focusing the radiation correctly, a test pattern is used on a mask for printing a specific marker onto a substrate. This marker is then measured by an inspection apparatus, such as a scatterometer, to determine whether there are errors in focus and dose and other related properties. The test pattern is configured such that changes in focus and dose may be easily determined by measuring the properties of a pattern that is exposed using the mask. The test pattern may be a 2D pattern where physical or geometric properties, e.g., pitch, are different in each of the two dimensions. The test pattern may also be a one-dimensional pattern made up of an array of structures in one dimension, the structures being made up of at least one substructure, the substructures reacting differently to focus and dose and giving rise to an exposed pattern from which focus and dose may be determined.
Abstract:
A lithographic apparatus includes an illumination system, a support, a patterning device, a substrate table, a projection system, and a detector. The apparatus further includes a polarization changing element, such as a quarter-wave plate, that is adjustable and a polarization analyzer, such as a linear polarizer. The polarization changing element and the polarization analyzer are arranged in order in the radiation beam path at the level at which a patterning device would be held by the support. By taking intensity measurements for different rotational orientations of the polarization changing element, information on the state of polarization of the radiation at the level of the patterning device can be obtained. Because the polarization analyzer is located before the projection system, the measurements are not affected by the fact that the detector is located after the projection system, such as at the level of the substrate.
Abstract:
The invention provides a position measurement system to measure a position of an object in a movement direction relative to a reference, said position measurement system comprising: —a diffraction grating, and —an interferometer, wherein the interferometer is configured to direct a measurement beam to the diffraction grating in a measuring direction that is orthogonal to the movement direction of the object, and wherein the diffraction grating is oriented relative to the interferometer such that the measurement beam is substantially at a Littrow angle of the diffraction grating so that a diffracted beam to be received by the interferometer is substantially parallel to the measuring direction.