Abstract:
Described is a process for the preparation of a catalyst comprising the steps of: (i) providing one or more support materials; (ii) providing one or more polymers on the support material; and (iii) providing one or more metals on the one or more supported polymers; wherein in step (ii) the one or more polymers do not comprise cross-linked polymers and/or polymers which have been reacted with a cross-linking agent. Also described is a catalyst obtained or obtainable according to said process, as well as the use of the catalyst, in particular in a method for the treatment of automobile engine exhaust gas.
Abstract:
Provided are catalyst composites whose catalytic material is effective to substantially simultaneously oxidize carbon monoxide and hydrocarbons and reduce nitrogen oxides. The catalyst composites have a two-metal layer on a carrier, the two-metal layer comprising a rhodium component supported by a first support comprising a refractory metal oxide component or a first ceria-zirconia composite; a palladium component supported by a second support comprising a second ceria-zirconia composite; one or more of a promoter, stabilizer, or binder; wherein the amount of the total of the first and second ceria-zirconia composites in the two-metal layer is equal to or greater than the amount of the refractory metal oxide component. Methods of making and using the same are also provided.
Abstract:
A catalyzed soot filter, in particular for the treatment of Diesel engine exhaust, comprises a coating design which ensures soot particulates filtration, assists the oxidation of carbon monoxide (CO), and produces low H2S emissions during normal engine operations and regeneration events.
Abstract:
The present disclosure relates to a catalyzed soot filter, in particular for the treatment of Diesel engine exhaust, with a coating design which ensures soot particulates filtration, assists the oxidation of carbon monoxide (CO), and produces low H2S emissions during normal engine operations and regeneration events.
Abstract:
Described is a process for the preparation of a catalyst comprising the steps of: (i) providing one or more support materials; (ii) providing one or more polymers on the support material; and (iii) providing one or more metals on the one or more supported polymers; wherein in step (ii) the one or more polymers do not comprise cross-linked polymers and/or polymers which have been reacted with a cross-linking agent. Also described is a catalyst obtained or obtainable according to said process, as well as the use of the catalyst, in particular in a method for the treatment of automobile engine exhaust gas.
Abstract:
A catalyst is provided, preferably for the use in selective catalytic reduction (SCR). Said catalyst comprises one or more zeolites of the MFI structure type, and one or more zeolites of the CHA structure type, wherein at least part of the one or more zeolites of the MFI structure type contains iron (Fe), and wherein at least part of the one or more zeolites of the CHA structure type contains copper (Cu). Furthermore, provided are an exhaust gas treatment system comprising said catalyst as well as a process for the treatment of a gas stream comprising NOX using said catalyst as well.
Abstract:
Provided are catalyst composites whose catalytic material is effective to substantially simultaneously oxidize carbon monoxide and hydrocarbons and reduce nitrogen oxides. The catalyst composites have a two-metal layer on a carrier, the two-metal layer comprising a rhodium component supported by a first support comprising a refractory metal oxide component or a first ceria-zirconia composite; a palladium component supported by a second support comprising a second ceria-zirconia composite; one or more of a promoter, stabilizer, or binder; wherein the amount of the total of the first and second ceria-zirconia composites in the two-metal layer is equal to or greater than the amount of the refractory metal oxide component. Methods of making and using the same are also provided.