Abstract:
The present disclosure relates to a catalyzed soot filter, in particular for the treatment of Diesel engine exhaust, with a coating design which ensures soot particulates filtration, assists the oxidation of carbon monoxide (CO), and produces low H2S emissions during normal engine operations and regeneration events.
Abstract:
The present invention relates to a process for preparing a catalyst, at least comprising the steps of adding a protecting agent to an aqueous solution of a metal precursor to give a mixture (M1), adding a reducing agent to mixture (M1) to give a mixture (M2), adding a support material to mixture (M2) to give a mixture (M3), adjusting the pH of mixture (M3), and separating the solid and liquid phase of mixture (M3). Furthermore, the present invention relates to the catalyst as such and its use as diese! oxidation catalyst.
Abstract:
A catalyst is provided, preferably for the use in selective catalytic reduction (SCR). Said catalyst comprises one or more zeolites of the MFI structure type, and one or more zeolites of the CHA structure type, wherein at least part of the one or more zeolites of the MFI structure type contains iron (Fe), and wherein at least part of the one or more zeolites of the CHA structure type contains copper (Cu). Furthermore, provided are an exhaust gas treatment system comprising said catalyst as well as a process for the treatment of a gas stream comprising NOX using said catalyst as well.
Abstract:
A layered diesel oxidation catalyst (DOC) comprises: a) a carrier substrate; b) a diesel oxidation catalytic material comprising bl)a first layer located on the carrier substrate, the first layer comprising palladium impregnated on a support material comprising ceria in an amount of at least 45 weight% based on the total weight of the support material, and optionally comprising platinum; b2) a second layer located on the first layer, the second layer comprising palladium and platinum each impregnated on a support material comprising a metal oxide; wherein the platinum to palladium weight ratio of the first layer is lower than the platinum to palladium weight ratio of the second layer.
Abstract:
Described is a catalyzed soot filter wherein the inlet coating of the filter comprises an oxidation catalyst comprising platinum (Pt) and optionally palladium (Pd), wherein the outlet coating of the filter comprises an oxidation catalyst comprising Pd and optionally Pt, wherein the Pt concentration in the outlet coating is lower than the Pt concentration in the inlet coating and wherein the weight ratio of Pt:Pd in the outlet coating is in the range of from 0:1 to 2:1; and wherein the inlet coating and the outlet coating are present on the wall flow substrate at a coating loading ratio in the range of from 0.5 to 1.5, calculated as ratio of the loading of the inlet coating (in g/inch3 (g/(2.54 cm)3)):loading of the outlet coating (in g/inch3 (g/(2.54 cm)3)). Systems include such catalyzed soot filters, methods of diesel engine exhaust gas treatment and methods of manufacturing catalyzed soot filters are also described.
Abstract:
Provided is a catalyst composition, in particular a diesel oxidation catalyst, for the treatment of exhaust gas emissions, such as the oxidation of unburned hydrocarbons (HC), and carbon monoxide (CO). More particularly, the present invention is directed to a catalyst structure comprising at least two, specifically three distinct layers, at least one of which contains an oxygen storage component (OSC) that is present in a layer separate from the majority of the platinum group metal (PGM) components, such as palladium and platinum.
Abstract:
Provided herein are zoned catalysts that utilize components efficiently in that relatively short zones are provided to achieve specific functionalities to convert and/or trap one or more components in the exhaust stream. Highly controlled zoned are formed from one end of a monolithic carrier. The zones have a flat profile such that the zoned catalytic material within each passage of the substrate is at a substantially uniform distance from one end of the carrier. Methods of making and using the same are also provided.