Abstract:
A validatable method for determining a photochemically effective dose for inactivating pathogens in a fluid sample is described herein. In particular, the instant invention covers methods for determining a photochemically effective doses sufficient to inactivate pathogens in a biological sample while leaving biologically active substances of interest unaffected. A batch irradiation reactor effective for inactivating pathogens in biological samples is also described.
Abstract:
A device and method for inactivating pathogens in therapeutic fluids with sterilizing radiation in a continuous flow arrangement while exhibiting radiation dose uniformity and narrow residence time distribution of the fluid within the device. The device (10) comprises a radiation permeable cylindrical tube (12) having a concentric cylindrical rotor (14) disposed therein, thereby providing a thin gap (16) therebetween. A top plate (18) having a fluid outlet (26) and a bottom plate (20) having a fluid inlet (24) seal the cylindrical tube (12). The inlet (24) and outlet (26) are both in fluid communication with the thin gap (16). A rotor shaft (36) is diposed axially through the cylindrical rotor (14) and is connected to a motor (30). A pump provides fluid flow through the device (10). A radiation source provides sterilizing radiation to the fluid through the cylindrical tube (12). As the fluid flows, the motor (30) drives the rotor (14) to impart Taylor vortices to the fluid flow, which exchanges the fluid closer to the cylindrical tube (12) with the fluid closer to the rotor (14).
Abstract:
Procédés et systèmes de récupération des composants sanguins, tels que le plasma, à partir de donneurs (D). Un procédé consiste à récupérer une unité de sang entier à partir d'un donneur (D), à faire passer de force l'unité de sang récupérée au travers d'un séparateur de plasma (90), à accumuler le plasma dans un conteneur (94) et à retourner les cellules concentrées aux donneurs (D). Un système comprend un ensemble jetable de récupération du sang (14) et un appareillage réutilisable (12) dans lequel l'ensemble de récupération (14) peut être monté. L'appareillage (12) est actionné par une source d'énergie autonome ne nécessitant aucune connexion électrique ou autre source extérieure d'énergie.
Abstract:
A validatable method for determining a photochemically effective dose for inactivating pathogens in a fluid sample is described herein. In particular, the instant invention covers methods for determining a photochemically effective doses sufficient to inactivate pathogens in a biological sample while leaving biologically active substances of interest unaffected. A batch irradiation reactor effective for inactivating pathogens in biological samples is also described.
Abstract:
A device and method for inactivating pathogens in therapeutic fluids with sterilizing radiation in a continuous thin fluid flow arrangement that exhibits radiation dose uniformity for fluids having high optical densities. Radiation dose uniformity is achieved in part through a 'carrying' mechanism that moves or carries the fluid, thereby eliminating a channel flow velocity profile where flow volumes near the channel walls run the risk of overexposure to the radiation due to very large residence times within the channel. The device comprises a relatively flat belt chamber (22) connected to a fluid flow through an inlet (24) and an outlet (26) on the belt chamber (22). The belt chamber (22) has a top surface (28) and a bottom surface (30). A radiation permeable plate (32) is disposed adjacent the top surface (28) of the belt chamber (22) and is in contact with the belt chamber (22). A radiation source (42) is provided adjacent to the plate (32) adjacent to a side opposite the belt chamber (22). A belt (34) having a plurality of flexible vanes (36) is disposed adjacent the bottom surface (30) of the belt chamber (22) such that the vanes (36) make contact with the belt chamber (22). The belt is driven by a roller mechanism (38) in the direction of the fluid flow. As the fluid flows through the belt chamber (22), the flexible vanes (36) provide a squeegee-like mechanism to move the fluid through the belt chamber (22) in discrete packets (40) defined by a pair of vanes (36). As the packets of fluid move through the belt chamber, they are exposed to sterilizing radiation passing through the plate (32).
Abstract:
Implant assemblies (10) and methodologies provide immuno-protection for implanted allografts, xenografts, and isografts. The assemblies and methodologies establish an improved boundary (34) between the host and the implanted cells. The boundary (34) has a pore size, an ultimate strength, and a metabolic transit value that assures the survival of the cells during the critical ischemic period and afterward. The boundary (34) allows the fabrication and clinical use of implant assemblies (10) and methodologies that can carry enough cells to be of therapeutic value to the host, yet occupy a relatively small, compact area within the host.
Abstract:
A material (16) is formed into hollow fiber form, and the surface characteristics of the interior bore is selectively modified in a predetermined fashion by a reactive lumen fluid. Nucleophilic materials, such as regenerated cellulose, can be formed into hollow fibers and simultaneously modified to improve their biocompatibility in accordance with the invention.
Abstract:
On donne à un matériau (16) la forme d'une fibre creuse dont les caractéristiques de surface de l'alésage intérieur sont sélectivement modifiées de manière prédéterminée par un fluide réactif s'écoulant dans le passage. On peut ainsi former des fibres creuses avec des matériaux nucléophiles, tels que la cellulose régénérée et en même temps modifier ces matériaux afin d'améliorer leur biocompatibilité.