Abstract:
Devices for removing compounds from a biological fluid are disclosed. The devices (20) include sorbent beads (22) applied to an adhesive-surface (26, 28) of support (24). The devices (20) may be used in "batch-type" or "flow-through" systems.
Abstract:
An intravenous ("IV") liquid delivery system includes: an IV pump tubing set; a shuttle pump or membrane pump actuator operable with the IV pump tubing set; upstream and downstream valve actuators operable with the IV pump tubing set; the IV pump tubing set including an air removal device; an air detector configured to sense air in the IV pump tubing set; a control unit configured and arranged to (i) open the upstream valve actuator and close the downstream valve actuator to allow the pump actuator to draw liquid into a pump actuation portion of the IV pump tubing set, and (ii) close the upstream valve actuator and open the downstream valve actuator to allow the pump actuator to push liquid out of the pump actuation portion, the system configured to attempt to remove the air via the air removal device while operating the upstream and downstream valve actuators according to (i) and (ii).
Abstract:
A membrane capable of sensing ammmonia dissolved in solution is provided. The membrane includes a hydrophobic polymer layer that has a mircroporous structure and contains a pH indicator embedded therein. The hydrophobic polymer is selected from the group of flourinated polymers such as teflon (PTFE) or polyvinylidene difluoride.
Abstract:
A methodology quantifies the average fiber diameter in complex multiple fiber matrixes in media region (28, 30 and 32) of a filter and assembly (20), even when the diameter of one or more of the fibers cannot be physically ascertained by conventional measurement methods.
Abstract:
The present invention relates to a process for preparing submicron sized nanoparticles of a poorly water soluble compound by sonicating to evaporate a portion of the organic phase or by lyophilizing a dispersion or microdispersion of a multiphase system having an organic phase and an aqueous phase, the organic phase havingthe poorly water soluble organic compound therein. The method is preferably used to prepare nanoparticles of a poorly water soluble, pharmaceutically active compound suitable for in vivo delivery, particularly by parenteral routes.
Abstract:
A permeable structure (16) forms a chamber (12) to hold living cells (14). The structure includes a first permeable region (18) surrounding at least a portion of the chamber (12) having a confirmation that, when implanted is host tissue, substantially blocks penetration of host cells into the chamber (12) while permitting solute transport. The structure (16) also includes a second permeable region (20) overlaying the first permeable region (18) having a confirmation that, when implanted in host tissue, forms a permeable interface with host tissue that permits solute transport. A third permeable region (22) is located between the first (18) and second (20) permeable regions. The third region (22) comprises a solution of polymer material formed in place between the first (18) and second (20) permeable regions. The third permeable region (22) bonds the first (18) and second (20) permeable regions together. The third permeable region (22) also has a confirmation that, when implanted in host tissue, permits solute transport between the first (18) and second (20) permeable regions together, providing a robust, laminated structure that resists delamination during implantation caused by cellular infiltration into discontinuous spaces between the first (18) and second (20) regions. The third, formed-in-place region (22) can also have a confirmation providing an immunoisolation effect. Furthermore, the permeability of the third, formed-in-place membrane (22) is sufficient high that it does not adversely effect the permability value desired for the overall multiple layer structure (16).
Abstract:
Polymer membrane structures are microfabricated from polyimide film by lithography or etching. The microfabricated structures have systematically varied dimensions and geometries conducive to implanting in host tissue and the promotion, when implanted, of new vascular structures.
Abstract:
A priming indicator for a fluid infusion system includes a luer cap (20) or other component of the infusion system having an indicator surface (22) covered by a membrane (24). The membrane exhibits a first visual characteristic, such as being opaque, when dry and exhibits a second characteristic, such as becoming less opaque, when wet. Once the membrane becomes wet, indicia on the surface, which may be provided on a rod at least partially covered by the membrane, becomes visible, thereby indicating an intravenous tube to which the luer cap is secured has been primed or is nearly primed. The indicator may alternately be employed at an upstream end of an infusion set, such as at the port of a medical bag providing a supply of fluid, to indicate a low level of fluid in the medical bag.
Abstract:
Membranes are made from polymers and heat treated so that they have at least two zones with pores of different sizes. Pores with a smaller size have a lower molecular weight cut off than pores with a larger size. Zones with pores of different sizes may also be made by coating portions of membranes with polymer coatings. Membranes with pores of different sizes may be used in dialyzers for hemofiltration, hemodiafiltration, and other hemodialysis procedures. The membranes may also be used in other separation processes.
Abstract:
A method and apparatus for filtering suspensions of medical and biological fluids, one aspect of which is separating a suspension comprising at least two types of particles (104) and (108) which are differently sized or shaped and in which a first type of red cell particle (104) may be deformable at a relatively lower force and/or faster rate than a second type of white cell particle (108). A filter membrane (100) is provided having pores (102) with substantially precisely dimensioned pore sizes, with the pores (102) being dimensioned to allow passage of the first type of particle (104) without distortion or only minimal distortion and passage of the second type of particle (108) only with substantial distortion. Because the filter membrane (100) has precisely dimensioned pores (102), with spacing between the pores (102) being maintained despite the smaller interval between the pores (102), the porosity of the membrane (100) may be relatively much greater, allowing faster filtration rates while reducing shear exposure time and consequently reducing particle damage. Various methods for preventing clogging of the membrane (100) are also disclosed.