Abstract:
The present invention relates to a process for the production of a boron-containing zeolitic material having an MWW framework structure comprising YO2 and B2O3, wherein Y stands for a tetravalent element, wherein said process comprises (a) providing a mixture comprising one or more sources for YO2, one or more sources for B2O3, one or more organotemplates, and seed crystals, (b) crystallizing the mixture obtained in (a) for obtaining a layered precursor of the boron-containing MWW-type zeolitic material, (c) calcining the layered precursor obtained in (b) for obtaining the boron-containing zeolitic material having an MWW framework structure, wherein the one or more organotemplates have the formula (I): R1R2R3N, wherein R1 is (C5-C8)cycloalkyl, and wherein R2 and R3 are independently from each other H or alkyl, as well as to a synthetic boron-containing zeolite which is obtainable and/or obtained according to the inventive process as well as to its use.
Abstract translation:本发明涉及一种生产具有包含YO 2和B 2 O 3的MWW骨架结构的含硼沸石材料的方法,其中Y代表四价元素,其中所述方法包括(a)提供包含一种或多种来源的混合物 对于YO2,一种或多种B 2 O 3,一种或多种有机模板和晶种的来源,(b)使(a)中获得的混合物结晶以获得含硼MWW型沸石材料的层状前体,(c)煅烧 (b)中获得的用于获得具有MWW骨架结构的含硼沸石材料的层状前体,其中所述一种或多种有机模板具有式(I):R1R2R3N,其中R1是(C5-C8)环烷基,其中R2 和R3彼此独立地为H或烷基,以及可根据本发明方法获得和/或获得的合成含硼沸石以及其用途。
Abstract:
The present invention relates to a process for the preparation of a pillared silicate compound comprising a layered silicate structure and bridging silicon atoms located between adjacent silicate layers of the silicate structure, wherein said bridging silicon atoms form at least one covalent bond to each of the adjacent silicate layers, said process comprising (1) providing one or more layered silicates; (2) adding said one or more layered silicates to a solvent system, wherein the resulting mixture has a pH of 5 or less; and (3) subjecting the mixture obtained in step (2) to solvothermal conditions; wherein no silicon-containing compound according to formula (I) R4-mSi[-(SiR2)n-R]m (I) is used at any point of the process up to and including step (3), wherein m is 1, 2, 3, or 4, and n is an integer greater than or equal to 0, wherein when n is equal to 0, one or more residues R are leaving groups, and wherein none of the residues R contains Si, as well as to a pillared silicate compound per se, preferably as obtained and/or obtainable according to the inventive process as well as to the use of the inventive compounds. A further process is disclosed wherein a sulfur oxoacid is present in step (2), and wherein a silicon-containing compound may or may not be used.
Abstract:
A method of dehydration of at least one compound (A) comprising, in the chain form, -at least one hydroxyl group and -at least one carbonyl functionality selected from the group consisting of aldehyde (CHO), ke- tone (CO) and carboxylic acid (COOH) and mixtures thereof,in the presence of at least one zeolite which is (a) obtainable from an organotemplate-free synthetic process and (b) isomorphously substituted comprising silicon, aluminum and at least one further metal wherein the at least one further metal is selected from the group consisting of the elements of Group 3 to 14 in Period 4 to 6and mixtures thereof.
Abstract:
A process for the production of a pillared silicate comprises: (i) providing a layered silicate; (ii) interlayer expanding the layered silicate provided in step (i) comprising a step of treating the layered silicate with one or more swelling agents; (iii) treating the interlayer expanded silicate with one or more hydrolysable silicon containing compounds; (iv) treating the interlayer expanded compound with an aqueous solution to obtain a pillared silicate; (v) removing at least a portion of the one or more swelling agents from the pillared silicate; (vi) impregnating the pillared silicate with one or more elements selected from the group consisting of Fe, Ru, Ir, and combinations of two or more thereof, as well as to a pillared silicate optionally obtainable from said process and its use, in particular in a process for the production of one or more olefins.
Abstract:
The present invention relates to a process for the preparation of a silicate compound, comprising (1) providing at least one layered silicate; and (2) mixing said layered silicate with water and at least one silicon containing compound according to formula R4-mSi[-(SiR2)n-R]m wherein at least one residue R is a leaving group and none of the residues R contains Si; m is 0, 1, 2, 3, or 4; and n is an integer greater than or equal to 0.
Abstract:
The present invention relates to a process for the preparation of an isomorphously substituted RUB-36 silicate comprising (1) providing a mixture containing silica, preferably amorphous silica, and/or at least one silica precursor, water, at least one suitable structure directing agent, (2) heating the mixture obtained according to (1) under hydrothermal conditions to give a suspension containing an RUB-36 silicate, (3) separating the RUB-36 silicate, wherein (a) either the mixture according to (1) contains at least one element suitable for isomorphous substitution and/or (b) the separated RUB-36 silicate according to (3) is subjected to isomorphous substitution.
Abstract:
The present invention relates to a process for the preparation of a zeolitic material having a BEA framework structure comprising the steps of: (i) providing one or more zeolitic materials having a BEA framework structure, wherein the BEA framework structure comprises YO2 and X2O3, wherein Y is a tetravalent element, and X is a trivalent element; (ii) subjecting the one or more zeolitic materials provided in step (i) to a procedure for removing at least a portion of X, preferably tetrahedrally coordinated X, from the BEA framework structure; wherein the Y:X molar ratios of the one or more zeolitic materials provided in step (i) are respectively comprised in the range of from 1 to 50.
Abstract:
The present invention relates to a pillared silicate compound comprising a layered silicate structure, and bridging metal atoms located between adjacent silicate layers of the silicate structure, wherein said bridging metal atoms form at least one covalent bond to each of the adjacent silicate layers, as well as a process for the preparation of a pillared silicate compound, and further includes a pillared silicate compound obtainable and or obtained according to said process, as well as a method of catalyzing a chemical reaction comprising the step of contacting one or more chemical compounds with the any of the aforementioned pillared silicate compounds.