Abstract:
A method is provided for using abrasive colloidal particles having multi-component composition comprising mixed 1) metal or metalloid oxides, 2) oxyfluorides, or 3) oxynitrides, each grouping (1, 2, or 3) individually alone or in combination thereof, in a chemical-mechanical manufacturing process for planarizing or polishing metal, semiconductor, dielectric, glass, polymer, optical, and ceramic materials. The particles exhibit a modified surface chemistry performance and have an isoelectric point (pHIEP) greater than the pH of the dispersed particles in solution, and with a stabilized particle dispersion at pH values of interest for CMP operations. The composition of the multi-component particles may be adjusted as desired, in regard to their chemical or physical properties such as surface chemistry, hardness, solubility, or degree of compatibility with the workpiece material being planarized or polished. Also provided is a chemical-mechanical planarization slurry mixture incorporating such multi-component particles and with a solution chemistry that enhances the CMP effects by in-part adjusting the pH of the solution away from the pHIEP of the media to maximize dispersion.
Abstract:
Disclosed are masks and mask blanks for photolithographic processes, photosensitive films and fabrication method therefor. Photosensitive films are deposited on a substrate in the masks for recording permanent pattern features via UV exposure. The masks are advantageously phase-shifting, but can be gray-scale masks having index patterns with arbitrary distribution of refractive index and pattern depth. The masks may have features above the surface formed from opaque or attenuating materials. Boro-germano-silicate photosensitive films having a composition consisting essentially, in terms of mole percentage, of: 0-20% of B2O3, 5-25% of GeO2 and the remainder SiO2 can be used for the film. The film is advantageously deposited by using PECVD wherein tetramethoxygermane is used as the germanium source.
Abstract:
The present invention provides a method of manufacturing optical devices which includes the steps of providing a substrate and forming at least one optical layer on the substrate. The optical layer is formed by a CVD process which includes a deuterated source gas. The present invention also provides an optical device which includes a substrate and an optical layer including deuterium.