Abstract:
The present invention provides a method of manufacturing optical devices which includes the steps of providing a substrate and forming at least one optical layer on the substrate. The optical layer is formed by a chemical vapor deposition (CVD) process which includes a deuterated source gas. The present invention also provides an optical device which includes a substrate and an optical layer including deuterium.
Abstract:
A composition represented by the formula Si1-xGexO2(1-y)N1.33y, wherein x is from about 0.05 to about 0.6 and y is from about 0.14 to about 0.74 exhibits properties highly suited for use in fabricating waveguides for liquid crystal based optical devices. In particular, the compositions have an index of refraction of from about 1.6 to about 1.8 for light at a wavelength of 1550 nm, and/or a coefficient of thermal expansion of from about 2.5x10-6°C-1 to about 5.0x10-6° C.-1. The compositions also have inherently low hydrogen content, and a high hydrogen permeability which allows better hydrogen removal by thermal annealing to provide a material which exhibits low optical losses and better etching properties than alternative materials.
Abstract:
A relatively facile, inexpensive method for patterning a layer of glass or a substrate involves patterning a seed material containing a nucleating agent adjacent a layer of thermally-crystallizable glass and heat treating the see d material and the layer of thermally-crystallizable glass to induce highly oriented crystal growth from the seed material through the thickness of the thermally-crystallizable glass layer at selected portions thereof. After the heat treatment, the layer of thermally-crystallizable glass is converted int o a desired pattern of glass surrounded by crystalline material. The crystalli ne material is removed with an etchant to leave a desired glass pattern.
Abstract:
Methods of fabricating dimensional silica-based substrates or structures comprising a porous silicon layers are contemplated. According to one embodiment, oxygen is extracted from the atomic elemental composition of a silica glass substrate by reacting a metallic gas with the substrate in a heated inert atmosphere to form a metal-oxygen complex along a surface of the substrate. The metal-oxygen complex is removed from the surface of the silica glass substrate to yield a crystalline porous silicon surface portion and one or more additional layers are formed over the crystalline porous silicon surface portion of the silica glass substrate to yield a dimensional silica-based substrate or structure comprising the porous silicon layer. Embodiments are also contemplated where the substrate is glass-based, but is not necessarily a silica-based glass substrate. Additional embodiments are disclosed and claimed.
Abstract:
A composition represented by the formula Si1-xGexO2(1-y)N1.33y, wherein x is from about 0.05 to about 0.6 and y is from about 0.14 to about 0.74 exhibits properties highly suited for use in fabricating waveguides for liquid crysta l based optical devices. In particular, the compositions have an index of refraction of from about 1.6 to about 1.8 for light at a wavelength of 1550 nm, and/or a coefficient of thermal expansion of from about 2.5 x 10-6~C-1 t o about 5.0 x 10-6~C-1. The compositions also have inherently low hydrogen content, and a high hydrogen permeability which allows better hydrogen remov al by thermal annealing to provide a material which exhibits low optical losses and better etching properties than alternative materials.
Abstract:
Methods of fabricating dimensional silica-based substrates or structures comprising a porous silicon layers are contemplated. According to one embodiment, oxygen is extracted from the atomic elemental composition of a silica glass substrate by reacting a metallic gas with the substrate in a heated inert atmosphere to form a metal-oxygen complex along a surface of the substrate. The metal-oxygen complex is removed from the surface of the silica glass substrate to yield a crystalline porous silicon surface portion and one or more additional layers are formed over the crystalline porous silicon surface portion of the silica glass substrate to yield a dimensional silica-based substrate or structure comprising the porous silicon layer. Embodiments are also contemplated where the substrate is glass-based, but is not necessarily a silica-based glass substrate. Additional embodiments are disclosed and claimed.
Abstract:
A solar heat collection element includes: a central tube formed from glass-ceramic material; and an outer tube formed from glass material disposed coaxially with respect to the central tube to form a volume therebetween.
Abstract:
Disclosed are masks and mask blanks for photolithographic processes, photosensitive materials and fabrication method therefor. Photosensitive materials are used in the masks for recording permanent pattern features via UV exposure. The masks are advantageously phase-shifting, but can be gray-scale masks having index patterns with arbitrary distribution of refractive index and pattern dimension. The masks may have features above the surface formed from opaque or attenuating materials. Alumino-boro-germano-silicate glasses having a composition comprising, in terms of mole percentage, 1-6% of Al2O3, 10-36% of B2O3, 2-20% of GeO2, 40-80% of SiO2, 2-10% of R2O, where R is selected from Li, Na and K, and expressed in terms of weight percentage of the glass, 0-5% of F, can be used for the mask substrate.
Abstract translation:公开了用于光刻工艺的掩模和掩模坯料,感光材料及其制造方法。 光敏材料用于通过紫外线曝光记录永久图案特征的掩模。 掩模有利地是相移,但是可以是具有折射率和图案尺寸的任意分布的索引图案的灰度掩模。 掩模可以具有由不透明或衰减材料形成的表面上方的特征。 氧化铝 - 硼 - 锗酸 - 硅酸盐玻璃,其组成包括以摩尔百分比计为1〜6%的Al 2 O 3,10-36%的B 2 O 3,2〜20%的GeO 2,40〜80%的SiO 2,2-10 R 2选自Li,Na和K的R 2 O%,并且以玻璃重量百分比表示,0-5%的F可以用于掩模基板。