Abstract:
In one embodiment a method of steering a glass web includes directing the glass web in a conveyance direction on a web conveyance pathway, contacting at least one surface of the glass web with at least one wheel of at least one idler roller, the at least one wheel of the at least one idler roller having an axis of rotation parallel to a surface of the glass web, detecting an angle between a centerline of the glass web and the conveyance direction with an angle measurement device, and modifying an orientation of the at least one idler roller and the at least one wheel about an axis of rotation substantially orthogonal to the web conveyance pathway to shift the glass web based on a detected angle between the centerline of the glass web and the conveyance direction of the web conveyance pathway.
Abstract:
A glass-ceramic article having one or more crystalline phases; a residual glass phase; a compressive stress layer extending from a first surface to a depth of compression (DOC); a maximum central tension greater than 70 MPa; a stored tensile energy greater than 22 J/m2; a fracture toughness greater than 1.0 MPa√m; and a haze less than 0.2.
Abstract:
A method of continuously processing glass ribbon having a thickness≤0.3 mm. The method includes providing a glass processing apparatus having a first processing zone, a second processing zone and a third processing zone. The glass ribbon is continuously fed from the first processing zone, through the second processing zone to the third processing zone. The feed rate of the glass ribbon is controlled through each processing zone using a global control device. A first buffer zone is provided between the first processing zone and the second processing zone in which the glass substrate is supported in a first catenary between two, spaced-apart, payoff positions. A second buffer zone is provided between the second processing zone and the third processing zone in which the glass substrate is supported in a second catenary between two, spaced-apart, payoff positions.
Abstract:
Systems for producing articles from glass tube include a converter having a base with a plurality of processing stations and a turret moveable relative to the base. The turret indexes a plurality of holders for holding the glass tubes successively through the processing stations. The systems further include a gas flow system or a suction system for producing a flow of gas through the glass tube during one or more heating, forming, separating or piercing operations. The flow of gas through the glass tube produced by the gas flow system or suction system may be sufficient to evacuate or purge volatile constituents of the glass from the glass tube and/or pierce a meniscus formed on the glass tube during separation, thereby reducing the Surface Hydrolytic Response (SHR) of the interior surface of the glass tube and articles made therefrom.
Abstract:
A glass ceramic article including a lithium disilicate crystalline phase, a petalite crystalline phased, and a residual glass phase. The glass ceramic article has a warp (μm) 0.91×10(2-0.03t) of electromagnetic radiation wavelengths from 450 nm to 800 nm, where t is the thickness of the glass ceramic article in mm.
Abstract:
Systems for producing articles from glass tube include a converter having a base with a plurality of processing stations and a turret moveable relative to the base. The turret indexes a plurality of holders for holding the glass tubes successively through the processing stations. The systems further include a gas flow system or a suction system for producing a flow of gas through the glass tube during one or more heating, forming, separating or piercing operations. The flow of gas through the glass tube produced by the gas flow system or suction system may be sufficient to evacuate or purge volatile constituents of the glass from the glass tube and/or pierce a meniscus formed on the glass tube during separation, thereby reducing the Surface Hydrolytic Response (SHR) of the interior surface of the glass tube and articles made therefrom.
Abstract:
A glass ceramic article including a lithium disilicate crystalline phase, a petalite crystalline phased, and a residual glass phase. The glass ceramic article has a warp (μm) 0.91×10(2−0.03t) of electromagnetic radiation wavelengths from 450 nm to 800 nm, where t is the thickness of the glass ceramic article in mm.
Abstract:
Methods for producing a glass sheet are provided. The methods can include forming a glass ribbon from molten glass, applying a polymer precursor to at least a portion of a first or second major surface of the glass ribbon, curing the polymer precursor to form a polymer coating, and separating the glass ribbon to produce at least one glass sheet. Glass ribbons and glass sheets produced by these methods are also disclosed.
Abstract:
Systems for producing articles from glass tube include a converter having a base with a plurality of processing stations and a turret moveable relative to the base. The turret indexes a plurality of holders for holding the glass tubes successively through the processing stations. The systems further include a gas flow system or a suction system for producing a flow of gas through the glass tube during one or more heating, forming, separating or piercing operations. The flow of gas through the glass tube produced by the gas flow system or suction system may be sufficient to evacuate or purge volatile constituents of the glass from the glass tube and/or pierce a meniscus formed on the glass tube during separation, thereby reducing the Surface Hydrolytic Response (SHR) of the interior surface of the glass tube and articles made therefrom.
Abstract:
Methods for producing a glass sheet are provided. The methods can include forming a glass ribbon from molten glass, applying a polymer precursor to at least a portion of a first or second major surface of the glass ribbon, curing the polymer precursor to form a polymer coating, and separating the glass ribbon to produce at least one glass sheet. Glass ribbons and glass sheets produced by these methods are also disclosed.