Abstract:
Fibers that exhibit good elasticity or extensibility and tenacity, and low modulus are prepared from propylene-based copolymers. The propylene-based copolymers comprise at least about 50 weight percent (wt %) of units derived from propylene and at least about 8 wt % of units derived from one or more comonomers other than propylene, e.g., ethylene. Particularly preferred propylene copolymers are characterized as having 13 C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity. In one aspect of the invention, fibers are subjected to stress-induced crystallization by subjecting the fiber to tensile elongation during draw.
Abstract translation:表现出良好的弹性,伸长性和韧性以及低模量的纤维由丙烯基共聚物制备。 基于丙烯的共聚物包含至少约50重量%(wt%)衍生自丙烯的单元和至少约8重量%的衍生自除丙烯以外的一种或多种共聚单体的单元,例如乙烯。 特别优选的丙烯共聚物的特征在于具有对应于约14.6和约15.7ppm的区域误差的13 C NMR峰,大约相同强度的峰。 在本发明的一个方面,纤维经受应力诱导结晶,通过在拉伸过程中对纤维进行拉伸伸长。
Abstract:
A fiber is obtainable from or comprises a blend of a propylene based polymer and an ethylene/α-olefin interpolymer characterized by an elastic recovery, Re, in percent at 300 percent strain and 1 cycle and a density, d, in grams/cubic centimeter, wherein the elastic recovery and the density satisfy the following relationship: Re >1481-1629(d). Such interpolymer can also be characterized by other properties. The fibers made therefrom have a relatively high elastic recovery and a relatively low coefficient of friction. The fibers can be cross-linked, if desired. Woven, knitted or non-woven fabrics can be made from such fibers.
Abstract:
The present invention relates to nonwoven webs or fabrics. In particular, the present invention relates to nonwoven webs having superior abrasion resistance and excellent softness characteristics. The nonwoven materials comprise fibers made from of a polymer blend of isotactic polypropylene and reactor grade propylene based elastomers or plastomers together with from 100 to 2500 ppm (by weight of the fiber) of a slip agent. The isotactic polypropylene can be homopolymer polypropylene, and/or random copolymers of propylene and one or more alpha-olefins. The reactor grade propylene based elastomers or plastomers have a molecular weight distribution of less than about 3.5, and a heat of fusion less than about 90 joules/gm. In particular, the reactor grade propylene based elastomers or plastomers contains from 3 to 15 percent by weight of units derived from an ethylene and a melt flow rate of from 2 to 200 grams/ 10 minutes. Erucamide is the preferred slip additive.
Abstract:
The present invention relates to propylene-based nonwoven layers made by the meltblown process, and laminates incorporating such layers. The meltblown layers of the present invention comprise propylene copolymers characterized by having less than 50 percent crystallinity. The meltblown layers of the present invention show an improved combination of extensibility and tensile strength. The laminate structures of the present invention are characterized by a combination of low bending modulus with high peel strength.
Abstract:
This invention relates to polyolefin compositions. In particular, the invention pertains to elastic polymer compositions that can be more easily processed on cast film lines, extrusion lamination or coating lines due to improved resistance to draw resonance. The compositions of the present invention preferably comprise an elastomeric polyolefin resin and a high pressure low density type resin.
Abstract:
The present invention provides a bicomponent fiber having increased surface roughness. The fiber includes a first polymer and a composite, wherein the composite forms a layer which forms at least a portion of the fiber's surface. The composite is formed by a second polymer and a filler, where an average particle size of the filler is greater than a thickness of the layer formed by the composite. The fibers can have a round, oval, trilobal, triangular, dog-boned, flat or hollow shape and a symmetrical or asymmetrical sheath/core or side-by-side configuration. When the fiber has a sheath/core configuration, the composite can form the sheath, and the average particle size of the filler is greater than the thickness of the sheath.
Abstract:
The invention is directed to a fiber comprising a low crystallinity polymer and a high crystallinity polymer, wherein the fiber is capable of undergoing plastic deformation upon elongation and wherein the low crystallinity polymer comprises at least one ethylene/±-olefin inter polymer.
Abstract:
Improved cone dyed yarns have now been discovered which have a balanced combination of desirable properties including less broken fibers and substantially uniform color. These cone dyed yarns comprise one or more elastic fibers and hard fibers, wherein the elastic fibers comprise the reaction product of at least one ethylene olefin block polymer and at least one crosslinking agent.
Abstract:
Described herein are composite compositions and methods for making such compositions. The composition includes or is the reaction product of a cellulosic material, an organic component, and a thermoplastic. Some useful organic components include a silane-containing polymer. Some of the compositions have improved physical properties such as tensile properties, improved strength, and reduced water absorption.
Abstract:
Fibers that exhibit good elasticity or extensibility and tenacity, and low modulus are prepared from propylene-based copolymers. The propylene-based copolymers comprise at least about 50 weight percent (wt %) of units derived from propylene and at least about 8 wt % of units derived from one or more comonomers other than propylene, e.g., ethylene. Particularly preferred propylene copolymers are characterized as having 13 C NMR peaks corresponding to a regio-error at about 14.6 and about 15.7 ppm, the peaks of about equal intensity. In one aspect of the invention, fibers are subjected to stress-induced crystallization by subjecting the fiber to tensile elongation during draw.