Abstract:
Interpolymer blends or terpolymers comprising ethylene monomer residues, residues of comonomers having carboxylic acid and/or carboxylic acid anhydride functionality, and residues of comonomers having epoxide functionality. Such interpolymer blends or terpolymers are cross-linkable materials suitable for use in cable polymeric coating applications and require little or no degassing after cross-linking.
Abstract:
A molded or extruded article, e.g., an electrical part or shielded cable, comprises at least one insulation layer and at least one semiconductive layer, the semiconductive layer thick and comprising in weight percent: A. 1 to 30 wt% of conductive filler; B. 10 to 90 wt% of a non-olefin elastomer; C. 10 to 90 wt% of an olefin elastomer; and D. Optionally, 0.5 to 2.5 wt% of peroxide. Carbon black and/or metal particulates or powder typically comprise the filler, silicone or urethane rubber the non-olefin elastomer, and EPR or EPDM the olefin elastomer.
Abstract:
Crosslinked, melt-shaped articles are manufactured by a process that does not require the use of post-shaping external heat or moisture, the process comprising the steps of: A. Forming a crosslinkable mixture of a 1. Organopolysiloxane containing one or more functional end groups; and 2. Silane-grafted or silane-copolymerized polyolefin; and B. Melt-shaping and partially crosslinking the mixture; and C. Cooling and continuing crosslinking the melt-shaped article. Crosslinking is promoted by the addition of a catalyst to the mixture before or during melt-shaping or to the melt-shaped article.
Abstract:
Plasticizers comprising a succinate ester and an epoxidized natural oil and plasticized polymeric compositions comprising such plasticizers. Such plasticized polymeric compositions can be employed in forming various articles of manufacture, such as coated conductors.
Abstract:
Strength members for cable, particularly fiber optic cable, are made by a method comprising the steps of: A. Wetting a fiber, e.g., fiberglass fiber, with an aqueous polymeric dispersion to form a wetted fiber, the dispersion comprising: 1. At least one thermoplastic resin, e.g., a polyolefin; 2. At least one dispersing agent, e.g., a ethylene ethyl acrylate polymer; and 3. Water; B. Removing the water from the wetted fiber, and C. Consolidating the resin on the fiber with or without curing.
Abstract:
Silicone-thermoplastic polymer reactive blends and copolymer products are prepared using economical post-reactor reactive mixing, e.g., extrusion. The procedure is based on the ring-opening polymerization of cyclic siloxanes within a thermoplastic polymer matrix. In a preferred mode, the thermoplastic polymer is a polyolefin, optionally containing silane groups that are available for reaction with the silicone polymer that is formed in situ. The resulting materials provide hybrid performance that can extend the range of applications beyond those which are served by thermoplastic polymers or silicones alone, or their physical blends.
Abstract:
La presente invención se refiere a composiciones poliméricas reticulables que comprenden un polímero a base de etileno, un peróxido orgánico y un co-agente de reticulación de isocianurato de dialilo. Tales composiciones poliméricas reticulables y sus formas reticuladas se pueden emplear como capas poliméricas en aplicaciones de alambre y cable, tal como aislamiento en cables de alimentación.
Abstract:
La presente invención se refiere a una composición reticulable con peróxido que comprende: (A) un polímero reticulable con peróxido, por ejemplo, un polietileno, (B) una base nitrogenada, por ejemplo, una base nitrogenada de bajo peso molecular, o bajo punto de fusión, o líquida tal como cianurato de trialilo (TAC); y (C) uno o más antioxidantes (AO), por ejemplo, diesteariltiodipropionato (DSTDP). La composición es útil en la manufactura de fundas aislantes para alambre y cable de alta y extra alta tensión.
Abstract:
Crosslinkable polymeric compositions comprising an ethylene-based polymer, an organic peroxide, and an amine-functionalized interpolymer. Such crosslinkable polymeric compositions and their crosslinked forms can be employed as polymeric layers in wire and cable applications, such as insulation in power cables.
Abstract:
Crosslinkable polymeric compositions comprising an ethylene-based polymer, an organic peroxide, and a crosslinking coagent having at least one N, N-diallylamide functional group. Such crosslinkable polymeric compositions and their crosslinked forms can be employed as polymeric layers in wire and cable applications, such as insulation in power cables.