Abstract:
A base manifold (16) for a modular solid oxide fuel cell assembly (10) comprises a plurality of receiving areas (108) for receiving a plurality of solid oxide fuel cell stacks (12); a fuel inlet passageway (95) disposed between a manifold fuel inlet port (94) and a plurality of stack fuel inlet ports (96); an oxidant inlet passageway (87) disposed between a manifold oxidant inlet port (86) and a plurality of stack oxidant inlet ports (88); a fuel outlet passageway (99) disposed between a plurality of stack fuel outlet ports (98) and a manifold fuel outlet port (100); and an oxidant outlet passageway (91) disposed between a plurality of stack oxidant outlet ports (90) and a manifold oxidant outlet port (92).
Abstract:
A passive gas spring disposed within a fuel cell assembly adjacent a fuel cell stack for maintaining the stack under compression at elevated temperatures. The spring includes at least one membrane formed of a metal alloy stable at the operating temperatures required of the fuel cell assembly. The membrane closes a chamber for retaining an amount of gas. As temperature of the assembly changes, differential thermal expansion of fuel cell components and supporting structural elements can cause height mismatches between the stack and the supporting structure, otherwise resulting in a loss of compression in the assembly. Because the temperature of the gas also increases, however, the spring force of the gas spring increases, thereby maintaining compressive load on the various assembly seals. A mechanical spring may also be provided.
Abstract:
A thermal energy management system 10 for solid oxide fuel cells includes a monolithic small cell extrusion type heat exchanger 12 coupled to an SOFC stack 14. In operation, a flow of air having a selected temperature is passed through the heat exchanger cells 18 and thermal energy flowing into and out of said SOFC stack 14 is managed primarily by radiation coupling between said SOFC stack 14 and said heat exchanger 12. The system 10 further provides management of the temperature distribution around the SOFC 14 to meet outer skin temperature design targets and to control the inlet gas temperatures for the SOFC 14. The system 10 provides a compact, efficient method for SOFC thermal energy management particularly well suited for transportation applications.
Abstract:
A fuel cell assembly (50) having manifold means for providing fuel and air to, and removing spent fuel and air from, flow passageways across the anodes (16) and cathodes (18) in a fuel cell stack. The sizes and proportions of the supply (23',33') and return (27',41') manifolds are optimized, and the total cross-sectional area of the return manifold is about twice the cross-sectional area of the supply manifold. The pressure drop in the manifolds is less than about one-quarter of the total pressure drop across the anode and cathode passageways in the stack, which ratio may be attained by adjusting the thickness of the anode and cathode spacers (38') and/or the size of the chimneys. Widthwise uniformity of flow across the anodes and cathodes is improved by forming each of the manifolds as a plurality of smaller, parallel flow conduits.
Abstract:
A solid oxide fuel cell is disclosed. The solid oxide fuel cell (10) comprises an electrolyte disposed between and in ionic communication with a first electrode and a second electrode to form an electrochemical cell. At least one spacer (60) is disposed in contact with the electrochemical cell (10). A mat (70) is disposed adjacent to the spacer (60). A solid fuel cell stock comprising at least two solid oxide fuel cells and an interconnect (80) disposed between adjacent fuel cells wherein said interconnect has at least one flow section (100) disposed between an expander (104) and a periphery.
Abstract:
Fuel reformers 100,200 and methods for using fuel reformers 100,200 are disclosed herein. In one embodiment, the fuel reformer 100,200 can comprise: an oxidant inlet, a mixing zone 38 capable of receiving the oxidant and vaporized fuel to form a fuel mixture 58, a reforming zone 40 disposed downstream of and in fluid communication with the mixing zone 38, wherein the reforming zone 40 is capable of converting the fuel mixture 58 into a gas stream 60, and a passive heat exchanger 24 disposed in thermal communication with the gas stream 60 and capable of heating the fuel prior to introduction to the mixing zone 38.
Abstract:
A fuel cell module having four sheet metal parts stamped from flat stock. The parts do not require any forming operations such as folding or dishing. Each part may have a different thickness to suit its function. The first part is a cell mounting frame for receiving and supporting a PEN fuel cell element. The second part is a cathode spacer, the thickness of the spacer determining the height of the cathode air flow field. The third part is an anode spacer, the thickness of spacer determining the height of the anode fuel flow field. The fourth part is a separator plate for separating the anode gas flow in one cell from the cathode air flow in an adjacent cell in a fuel cell stack. The four plates are joined by welding or brazing and may be assembled in any order or combination which suits the assembly process. Any desired number of modules may be stacked together to form a fuel cell stack.
Abstract:
A passive gas spring disposed within a fuel cell assembly adjacent a fuel cell stack for maintaining the stack under compression at elevated temperatures. The spring includes at least one membrane formed of a metal alloy stable at the operating temperatures required of the fuel cell assembly. The membrane closes a chamber for retaining an amount of gas. As temperature of the assembly changes, differential thermal expansion of fuel cell components and supporting structural elements can cause height mismatches between the stack and the supporting structure, otherwise resulting in a loss of compression in the assembly. Because the temperature of the gas also increases, however, the spring force of the gas spring increases, thereby maintaining compressive load on the various assembly seals. A mechanical spring may also be provided.
Abstract:
A fuel cell module having four sheet metal parts stamped from flat stock. The parts do not require any forming operations such as folding or dishing. Each part may have a different thickness to suit its function. The first part is a cell mounting frame for receiving and supporting a PEN fuel cell element. The second part is a cathode spacer, the thickness of the spacer determining the height of the cathode air flow field. The third part is an anode spacer, the thickness of spacer determining the height of the anode fuel flow field. The fourth part is a separator plate for separating the anode gas flow in one cell from the cathode air flow in an adjacent cell in a fuel cell stack. The four plates are joined by welding or brazing and may be assembled in any order or combination which suits the assembly process. Any desired number of modules may be stacked together to form a fuel cell stack.
Abstract:
A base manifold (16) for a modular solid oxide fuel cell assembly (10) comprises a plurality of receiving areas (108) for receiving a plurality of solid oxide fuel cell stacks (12); a fuel inlet passageway (95) disposed between a manifold fuel inlet port (94) and a plurality of stack fuel inlet ports (96); an oxidant inlet passageway (87) disposed between a manifold oxidant inlet port (86) and a plurality of stack oxidant inlet ports (88); a fuel outlet passageway (99) disposed between a plurality of stack fuel outlet ports (98) and a manifold fuel outlet port (100); and an oxidant outlet passageway (91) disposed between a plurality of stack oxidant outlet ports (90) and a manifold oxidant outlet port (92).