Abstract:
A method for monitoring process gas of a solid oxide fuel cell system (10) is disclosed. The method comprises directing a portion of process gas from a chamber (16) of the solid oxide fuel cell system (10) to a main plenum chamber (12). A portion of process gas is cooled to a measurable temperature and directed to a sensor (50) for analyzing. A solid oxide fuel cell system (10) is also disclosed.
Abstract:
A textured surface is formed on at least one of a fuel cell mounting plate or fuel cell subassembly to define a joint spacing between these two components. In a preferred embodiment, the textured surface comprises a plurality of dimples coined or otherwise formed in the metal mounting plate. The joint spacing improves the manufacturing and assembly process of the fuel cell cassettes through precise application and control of the brazing process which improves the braze joint strength while reducing material cost.
Abstract:
A method for monitoring process gas of a solid oxide fuel cell system (10) is disclosed. The method comprises directing a portion of process gas from a chamber (16) of the solid oxide fuel cell system (10) to a main plenum chamber (12). A portion of process gas is cooled to a measurable temperature and directed to a sensor (50) for analyzing. A solid oxide fuel cell system (10) is also disclosed.
Abstract:
A textured surface is formed on at least one of a fuel cell mounting plate or fuel cell subassembly to define a joint spacing between these two components. In a preferred embodiment, the textured surface comprises a plurality of dimples coined or otherwise formed in the metal mounting plate. The joint spacing improves the manufacturing and assembly process of the fuel cell cassettes through precise application and control of the brazing process which improves the braze joint strength while reducing material cost.
Abstract:
A fuel cell module having four sheet metal parts stamped from flat stock. The parts do not require any forming operations such as folding or dishing. Each part may have a different thickness to suit its function. The first part is a cell mounting frame for receiving and supporting a PEN fuel cell element. The second part is a cathode spacer, the thickness of the spacer determining the height of the cathode air flow field. The third part is an anode spacer, the thickness of spacer determining the height of the anode fuel flow field. The fourth part is a separator plate for separating the anode gas flow in one cell from the cathode air flow in an adjacent cell in a fuel cell stack. The four plates are joined by welding or brazing and may be assembled in any order or combination which suits the assembly process. Any desired number of modules may be stacked together to form a fuel cell stack.
Abstract:
A fuel cell module having four sheet metal parts stamped from flat stock. The parts do not require any forming operations such as folding or dishing. Each part may have a different thickness to suit its function. The first part is a cell mounting frame for receiving and supporting a PEN fuel cell element. The second part is a cathode spacer, the thickness of the spacer determining the height of the cathode air flow field. The third part is an anode spacer, the thickness of spacer determining the height of the anode fuel flow field. The fourth part is a separator plate for separating the anode gas flow in one cell from the cathode air flow in an adjacent cell in a fuel cell stack. The four plates are joined by welding or brazing and may be assembled in any order or combination which suits the assembly process. Any desired number of modules may be stacked together to form a fuel cell stack.
Abstract:
In a solid-oxide fuel cell assembly, at least one positive displacement air supply (PDAS) pump supplies at least a portion of the air required for various functional air streams through the assembly. Mass air flow through each PDAS pump is readily controlled to a predetermined flow by controlling the rotational speed of the pump, obviating the need for an MAF sensor and control valve. Preferably, each different air stream through the assembly is controlled by its own PDAS pump, sized for the required flow, allowing each to operate at its optimal pressure and thereby minimizing the parasitic electrical cost of providing air to the SOFC assembly.
Abstract:
A load frame with mechanical springs for providing compression to a fuel cell stack during assembly and operation of a fuel cell assembly. The stack assembly load frame includes a base plate for supporting the stack, a moveable spring holder above the stack, a retaining plate above the spring holder, and tubular supports or rods retaining the post-sintered spacing established by the applied load defining the spacing of the base plate from the retaining plate. A spring for maintaining compression in each stack is positioned between the spring holder and the retaining plate. The invention further comprises a method for assembling a fuel cell assembly to provide an adequate compressive load to the stack during assembly and operation.
Abstract:
A fuel cell system (200) includes a fuel cell (110) disposed within an enclosure (130). Pressure is controlled within the fuel cell by a flow control (140); and pressure is controlled within the enclosure by an enclosure pressure control (150). The pressure control system (230) for a reformer (210) within an enclosure (220), the pressure control system comprises a flow control for controlling pressure within the reformer and a pressure control for controlling pressure within the enclosure. The flow control and pressure control are coordinated to provide a desired pressure differential between the fuel cell and the enclosure.