Abstract:
An integrated lighting apparatus comprises a first control device including a semiconductor substrate, an integrated circuit block formed above a first portion of the semiconductor substrate, and a plurality of power pads formed above the integrated circuit block; a first light emitting device formed above a second portion of the semiconductor substrate; and a through plug passing through the semiconductor substrate for electrically connecting the first control device and the first light emitting device.
Abstract:
A flip-chip LED including a light emitting structure, a first dielectric layer, a first metal layer, a second metal layer, and a second dielectric layer is provided. The light emitting structure includes a first conductive layer, an active layer, and a second conductive layer. The active layer is disposed on the first conductive layer, and the second conductive layer is disposed on the active layer. The first metal layer is disposed on the light emitting structure and is contact with the first conductive layer, and part of the first metal layer is disposed on the first dielectric layer. The second metal layer is disposed on the light emitting structure and is in contact with the second conductive layer, and part of the second metal layer is disposed on the first dielectric layer. The second dielectric layer is disposed on the first dielectric layer. The first conductive layer includes a rough surface so as to improve a light extraction efficiency.
Abstract:
An optoelectronic element includes an optoelectronic unit having a first top surface; a first metal layer on the first top surface; a first transparent structure surrounding the optoelectronic unit and exposing the first top surface; and a first contact layer on the first transparent structure, including a connective part electrically connected with the first metal layer.
Abstract:
An LED bulb with an LED assembly, including a substrate having a first top surface, longer side surface and shorter side surface; a mount disposed on the first top surface, having a first inner side surface and second inner side surface facing the first inner side surface; a plurality of LED chips on the first top surface, arranged between the first and second inner side surfaces, having a second top surface; an electrode plate formed on the mount, electrically connected to the plurality of LED chips with a third top surface which does not extend beyond the shorter side surface in a top view; and a phosphor layer covering the plurality of LED chips, mount, and electrode plate, without covering the side surfaces; and a cover covering the LED assembly. The third top surface is higher than the second top surface in an elevation based on the first top surface.
Abstract:
An optoelectronic semiconductor device includes a substrate, a semiconductor system having an active layer formed on the substrate and an electrode structure formed on the semiconductor system, wherein the layout of the electrode structure having at least a first conductivity type contact zone or a first conductivity type bonding pad, a second conductivity type bonding pad, a first conductivity type extension electrode, and a second conductivity type extension electrode wherein the first conductivity type extension electrode and the second conductivity type extension electrode have three-dimensional crossover, and partial of the first conductivity type extension electrode and the first conductivity type contact zone or the first conductivity type bonding pad are on the opposite sides of the active layer.