Abstract:
Multipath components of transmitted data symbols are received with individual delays and processed by a RAKE having a number of fingers. A delay profile (31 ) indicating magnitudes for a first number of delay values is provided. Estimated magnitudes for a second number of delay values located between the first number of delay values are calculated by interpolation, and a combined delay profile (32) is provided by combining the magnitudes for the first and second number of delay values. Delay values for peaks in the combined delay profile are determined, and a number of peak delay values (P 1 , P 2 , P) comprising the largest peak are selected from the combined delay profile. At least some of the selected peak delay values are provided to the RAKE and assigned to the fingers. This allows a reduction of current consumption and dye area, while still providing delay values with sufficient resolution for the RAKE.
Abstract:
The present invention includes a method and apparatus for autonomously determining by a first UE the identities (IDs) of one or more other UEs that are operating in or around the same network area as the first UE. More particularly, the first UE determines with a defined reliability the UE ID of an otherwise unknown UE based on receiving and processing an HS- SCCH transmission targeted to the unknown UE. By learning actual UE IDs for one or more other UEs operating in or around the same area as the first UE, the first UE can then properly decode HS-SCCH transmissions to those other UEs, and thereby gain knowledge of the signal structures used for data (HS-PDCH) transmissions to those other UEs. Advantageously, the first UE applies such knowledge in its desired-signal receiver processing, such as for enhancing channel estimation and/or performing structured-signal interference cancellation.
Abstract:
Techniques are disclosed for determining which channelization codes are used for an interfering HS-PDSCH transmission without knowing whether a neighboring UE targeted by that transmission has had its 64QAM capability activated by higher layer signaling. The average amplitude is measured for each of several possible groups of channelization codes for each of one or more nearby UEs that might be the targets of interfering HS-PDSCH messages. Testing whether the amplitude is approximately the same across the codes in a possible combination of channelization codes yields a metric value that indicates whether that particular combination of codes is likely to be transmitted to a given UE. A second metric that detects the most likely modulation for possible groups of channelization codes is also calculated. The metrics are combined to determine which combination of channelization codes and modulation scheme is most likely being used for addressing the neighboring UE.
Abstract:
The computation of code-specific channel matrices for an Assisted Maximum Likelihood Detection (AMLD) receiver comprises separately computing high rate matrices that change each symbol period, and a low rate matrix that is substantially constant over a plurality of symbol periods. The high and low rate matrices are combined to generate a code-specific channel matrix for each receiver stage. The high rate matrices include scrambling and spreading code information, and the low rate matrices include information on the net channel response and combining weights. The low rate matrices are efficiently computed by a linear convolution in the frequency domain of the net channel response and combining weights (with zero padding to avoid circular convolution), then transforming the convolution to the time domain and extracting matrix elements. Where the combining weights are constant across stages, a common code-specific channel matrix may be computed and used in multiple AMLD receiver stages.
Abstract:
Methods, receivers, and computer program products for defining asymmetric decision regions of a symbol space to interpret transmitted power control commands are disclosed. A method of determining transmitted power control commands at a. receiver can include defining a first decision region of a symbol space associated with a first power control command at the receiver and a second decision region of the symbol space associated with a second power control command at the receiver where the first and second regions are asymmetric with one another. Methods of determining a transmitted power control command during soft handover mode in a wideband code division multiple access communications system are also discussed wherein a first determination of a combined power control command received from a plurality of transmitters can be combined with a second determination of the combined power control command received from the plurality of transmitters to provide a combined power control command. Related circuits are, disclosed as well.
Abstract:
Log-likelihood ratios produced by a decoder are incorporated into a soft symbol to soft bit estimation process and are used to perform improved channel estimation and impairment covariance estimation. In an example method, a plurality of soft bits and corresponding probability metrics for a series of received unknown symbols are generated. Estimates of the received unknown information symbols are then regenerated, as a function of the soft bits and corresponding probability metrics. An estimate of the average amplitude of the received unknown information symbols, or an estimate of the propagation channel response experienced by the received unknown information symbols, or both, are calculated, as a function of the regenerated symbol estimates. The results are applied to produce demodulated symbols for a second decoding iteration for the series of received unknown symbols.
Abstract:
Adaptive reconfiguration of a wireless receiver is enabled based on channel geometry According to an embodiment, the wireless receiver includes a geometry factor processing module and signal processing modules, e.g. such as hut not limited to an SIR estimation module, a power estimation module, a despreading module, a low- pass filter, a combing weight generation module, a coefficient estimation module, a synchronization control channel interference canceller module, etc. The geometry factor processing module determines a geometry factor for the channel over which signals are transmitted to the wireless receiver, the geometry factor being a measure of the ratio of total transmitted power received by the wireless receiver to total interference plus noise power at the wireless receiver. One or more of the receiver signal, processing modules are reconfigurable based on the geometry factor.
Abstract:
A receiver and method for receiving and processing a sequence of transmitted symbols in a digital communication system utilizing soft pilot symbols. A set of soft pilot symbols are transmitted with higher reliability than the remaining symbols in the sequence by modulating the soft pilot symbols with a lower order modulation such as BPSK or QPSK while modulating the remaining symbols with a higher order modulation such as 16QAM or 64QAM. The receiver knows the modulation type and location (time/frequency/code) of the soft pilot symbols, and demodulates them first. The receiver uses the demodulated soft pilot symbols as known symbols to estimate parameters of the received radio signal. Unlike traditional fixed pilots, the soft pilots still carry some data. Additionally, the soft pilots are particularly helpful in establishing the amplitude reference essential in demodulating the higher order modulation symbols.
Abstract:
With a nonparametric G-Rake receiver, combining weights may be determined using a nonparametric mechanism in multiple-input, multiple-output (MIMO) scenarios. In an example embodiment, a method for a receiving device having a nonparametric G-Rake receiver entails calculating an impairment covariance matrix and determining combining weights. More specifically, the impairment covariance matrix is calculated based on a pilot channel using a nonparametric mechanism in a MIMO scenario in which a code-reuse interference term exists. The combining weights are determined for the nonparametric G-Rake receiver responsive to the impairment covariance matrix and by accounting for the code-reuse interference term.