Abstract:
Techniques for directly adapting the parameters of a smoothing filter used for channel estimation to the current velocity and signal-to-noise ratio (SNR) situation. An example method begins with a plurality of channel response measurements. For each of a first subset of a set of pre-determined filter responses, the channel measurement samples are filtered to obtain a corresponding set of estimated channel response samples. Next, for each set of estimated channel response samples, a corresponding set of ordered residuals are calculated from the channel measurement samples. Each set of ordered residuals is evaluated to determine a measure of correlation among the ordered residuals, and an updated filter response is selected from a second subset of the set of pre-determined filter responses, based on this evaluation, for use in demodulating a received signal.
Abstract:
In MU-MIMO scenarios, a target terminal can be exposed to data streams intended for other terminals. If the target terminal is capable of interference cancellation, then a network node, such as a base station or RNC, can provide the target terminal with interference information so that the target terminal can efficiently cancel interferences due to these interfering data streams. The interference information may include one or more interfering configuration, each of which characterizes a related interfering data stream. The interference information can also include the identity of the other terminal that is the intended recipient of the interfering stream. The network node may determine whether the target terminal can benefit from the interference information. If so, the network node can provide the interference information to the target terminal.
Abstract:
In MU-MIMO scenarios, a target terminal can be exposed to data streams intended for other terminals. If the target terminal is capable of interference cancellation, then a network node, such as a base station or RNC, can provide the target terminal with interference information so that the target terminal can efficiently cancel interferences due to these interfering data streams. The interference information may include one or more interfering configuration, each of which characterizes a related interfering data stream. The interference information can also include the identity of the other terminal that is the intended recipient of the interfering stream. The network node may determine whether the target terminal can benefit from the interference information. If so, the network node can provide the interference information to the target terminal.
Abstract:
Techniques for expanding the set of addressable interfering signals in an interference cancelling receiver are described, where the task of control message detection from interfering cells is integrated in an iterative receiver process where increasingly better a priori information on the received data signals from the previous iteration is used to detect additional control messages and successively grow the set of interfering signals included in the receiver's interference mitigation processing. In an example method, first estimated symbols for a desired signal are generated. A control channel corresponding to a first interfering signal is detected, where said detecting is based on the first estimated symbols. Signal characteristics information for the first interfering signal is then derived from the detected control channel signal, and used to generate second estimated symbols for the desired signal, using an interference-mitigation technique to mitigate the effects of the interfering signal.