Abstract:
A system for operating at least one magnetorheological fluid clutch apparatus may, in a first mode, vary an amount of torque transmission between a driving member and a driven member in the at least one magnetorheological fluid clutch apparatus by actuating at least one coil in the at least one magnetorheological fluid clutch apparatus. In a second mode, the system may cause torque transmission between the driven member and the driving member by setting a desired remanent magnetization level in a magnetic component of the at least one magnetorheological fluid clutch apparatus by actuating the at least one coil in the at least one magnetorheological fluid clutch apparatus.
Abstract:
L'invention concerne un dispositif destiné à être positionné à proximité d'une articulation entre deux parties, le dispositif comprenant une première interface (11) portée par une première des deux parties et une deuxième interface (12) portée par une deuxième des deux parties, le dispositif comprenant au moins une connexion entre la première interface et la deuxième interface, la connexion comportant un double vérin qui comporte deux chambres reliées entre elles par un piston flottant, une première des deux chambres étant liée à la première interface et une deuxième des deux chambres étant liée à une tige de sortie du double vérin, ladite tige étant reliée à la deuxième interface. L'invention concerne également un système comprenant un tel dispositif.
Abstract:
A system for assisting a user in strength training with a strength training device comprises a torque source. One or more magnetorheological (MR) fluid clutch apparatuses has an input coupled to torque source to receive torque from the torque source, the MR fluid clutch apparatus controllable to transmit a variable amount of torque via an output thereof. A modulation interface couples the output of the at least one MR fluid clutch apparatus to a force transmission of the training device. One or more sensors provide information indicative of a training action by the user. A training processor comprises a training effort calculator module for receiving the information indicative of the training action and for characterizing the training action, a training assistance controller module for determining a level of force assistance from the characterizing of the training action, and an assistance generator module for controlling the at least one MR fluid clutch apparatus in exerting the force assistance at said level on the force transmission of the training device to assist the user in the training action. A method for assisting a user in strength training with a MR fluid clutch apparatus is also provided.
Abstract:
An active suspension system comprises at least one biasing device configured to support a body from a structure, and at least one motor. A magnetorheological (MR) fluid clutch apparatus(es) is coupled to the at least one motor to receive torque from the motor, the MR fluid clutch apparatus controllable to transmit a variable amount of torque. A mechanism is between the at least one MR fluid clutch apparatus and the body to convert the torque received from the at least one MR fluid clutch apparatus into a force on the body. Sensor(s) provide information indicative of a state of the body or structure. A controller receives the information indicative of the state of the body or structure and for outputting a signal to control the at least one MR fluid clutch apparatus in exerting a desired force on the body to control movement of the body according to a desired movement behavior.
Abstract:
An active suspension system comprises at least one biasing device configured to support a body from a structure, and at least one motor. A magnetorheological (MR) fluid clutch apparatus(es) is coupled to the at least one motor to receive torque from the motor, the MR fluid clutch apparatus controllable to transmit a variable amount of torque. A mechanism is between the at least one MR fluid clutch apparatus and the body to convert the torque received from the at least one MR fluid clutch apparatus into a force on the body. Sensor(s) provide information indicative of a state of the body or structure. A controller receives the information indicative of the state of the body or structure and for outputting a signal to control the at least one MR fluid clutch apparatus in exerting a desired force on the body to control movement of the body according to a desired movement behavior.
Abstract:
A system comprises one or more wearable devices including a first body interface adapted to be secured to a first bodily part. A second body interface is adapted to be secured to a second bodily part separated from the first bodily part by a physiological joint. One or more joints provide one or more degrees of freedom between the first body interface and the second body interface. A magnetorheological (MR) fluid actuator unit comprises one or more power sources. An MR fluid clutch apparatus receiving torque from the at least one power source, the at least one MR fluid clutch apparatus operable to generate a variable amount of torque transmission when subjected to a magnetic field. A transmission couples the MR fluid actuator unit to the wearable device for converting torque from the MR fluid actuator unit to relative movement of the body interfaces with respect to one another.
Abstract:
A telepresence controller is provided for interaction with a remote telepresence session to control haptic interactions between an end effector and the remote telepresence session. Force sensor (s) monitor force (s) applied to an end effector. Position sensor (s) monitor a position of the end effector. The telepresence controller communicates with the remote telepresence session to exchange position data and force data indicative of concurrent haptic movements of the end effector and an object in the remote telepresence session. Magnetorheological fluid clutch apparatus (es ) have an input adapted to be connected to a power source and configured to receive a degree of actuation (DOA) therefrom, the magnetorheological fluid clutch apparatus ( es ) having an output being actuatable to selectively transmit the received DOA to the end effector by controlled slippage. A force controller module determines a force input required on the end effector as a function of haptic events for the object in the remote telepresence session. A clutch driver module drives the magnetorheological fluid clutch apparatus with the controlled slippage being as a function of the force input.
Abstract:
A system for assisting a user in moving a device relative to a structure comprises a magnetorheological (MR) fluid actuator unit including at least one torque source and at least one MR fluid clutch apparatus having an input coupled to the at least one torque source to receive torque from the at least one torque source, the MR fluid clutch apparatus controllable to transmit a variable amount of assistance force via an output thereof. An interface is configured for coupling the output of the at least one MR fluid clutch apparatus to the device or surrounding structure. At least one sensor provides information about a movement of the device. A processor unit for controlling the at least one MR fluid clutch apparatus in exerting the variable amount of assistance force as a function of said information, wherein the system is configured for one of the MR fluid actuator unit and the interface to be coupled to the structure, and for the other of the MR fluid actuator unit and the interface to be coupled to the device for the assistance force from the MR fluid actuator unit to assist in moving the device.