Abstract:
There are provided semiconductor structures (100) and devices (200) comprising silicon carbide (SiC) and methods for making the same. The structures (100) and devices (200) comprise a base or shielding layer (216), channel (218) and surface layer (220), all desirably formed via ion implantation. As a result, the structures and devices provided herein are hard, "normally off" devices, i.e., exhibiting threshold voltages of greater than about 3 volts.
Abstract:
A system includes a silicon carbide (SiC) semiconductor device (100) and a hermetically sealed packaging (130) enclosing the SiC semiconductor device. The hermetically sealed packaging is configured to maintain a particular atmosphere (132) near the SiC semiconductor device. Further, the particular atmosphere limits a shift in a threshold voltage of the SiC semiconductor device to less than 1 V during operation.
Abstract:
In one embodiment, the invention comprises a silicon-carbide MOSFET comprising individual MOSFET cells. Each cell comprises a U-shaped well (228) (P type) and two parallel sources (260) (N type) formed within the well. A plurality of source rungs (262) (doped N) connect sources (260) at multiple locations. Regions between two rungs (262) comprise a body region (252) (P type). These features are formed on an N-type epitaxial layer (220), which is formed on an N-type substrate (216). A contact (290) extends across and contacts a plurality of source rungs (262) and body regions (252). Gate oxide and a gate contact overlie a leg of a well of a first cell and a leg of a well of a second adjacent cell, inverting the conductivity responsive to a gate voltage. A MOSFET comprises a plurality of these cells to attain a desired low channel resistance. The cell regions are formed using self-alignment techniques at several states of the fabrication process.
Abstract:
There are provided semiconductor structures (100) and devices (200) comprising silicon carbide (SiC) and methods for making the same. The structures (100) and devices (200) comprise a base or shielding layer (216), channel (218) and surface layer (220), all desirably formed via ion implantation. As a result, the structures and devices provided herein are hard, "normally off" devices, i.e., exhibiting threshold voltages of greater than about 3 volts.
Abstract:
One embodiment of the invention comprises a MEMS structure further comprising: a MEMS device (240) having a first surface with one or more contact structures (244, 245 and 246) thereon connected to functional elements of the MEMS device (240), a dielectric layer (100) overlying the first surface defining openings therein through which the contact structures (244, 245 and 246) are exposed, a patterned metallization layer (254, 255 and 256) comprising conductive material extending from the contact structures (244, 245 and 246) through the openings in the dielectric layer (100) and onto a surface of the dielectric layer and a first heat sink (190) in thermal communication with the metallization layer (254, 255 and 256).
Abstract:
One embodiment of the invention comprises a MEMS structure further comprising: a MEMS device (240) having a first surface with one or more contact structures (244, 245 and 246) thereon connected to functional elements of the MEMS device (240), a dielectric layer (100) overlying the first surface defining openings therein through which the contact structures (244, 245 and 246) are exposed, a patterned metallization layer (254, 255 and 256) comprising conductive material extending from the contact structures (244, 245 and 246) through the openings in the dielectric layer (100) and onto a surface of the dielectric layer and a first heat sink (190) in thermal communication with the metallization layer (254, 255 and 256).