Abstract:
A target supply device may include a nozzle configured to output a liquid target substance contained in a tank, an excitation element, a droplet detection unit configured to detect a droplet output from the nozzle, a passage time interval measurement unit configured to measure a passage time interval of droplets, and a control unit. The control unit may be configured to set a proper range of the passage time interval, change the duty value of the electric signal to be input to the excitation element, store the passage time interval measurement values of the droplets generated with respect to a plurality of duty values and variation thereof in association with the duty values, and determine an operation duty value based on the variation from among the duty values with which the passage time interval measurement values are within the proper range, among the duty values.
Abstract:
An EUV light generation device generates EUV light stably. The EUV light generation device may include a chamber in which extreme ultraviolet light is generated when a target is irradiated with laser light in a predetermined region inside the chamber, a target supply device configured to output the target to the predetermined region in the chamber to thereby supply the target to the predetermined region, and a target recovery apparatus configured to recover the target output from the target supply device and not irradiated with the laser light. The target recovery apparatus may include a receiver disposed to be inclined with respect to a trajectory of the target output from the target supply device, the receiver being configured to receive the target by allowing the target not irradiated with the laser light to collide with the receiver, and an excitation device configured to vibrate the receiver.
Abstract:
A target supply device may be provided with a tank configured to contain a metal as a target material, a nozzle having a nozzle hole through which the target material is output from the tank, a filter disposed in a communication portion for conducting the target material from the tank to the nozzle hole, a temperature adjuster configured to change the temperature of the target material in the tank, and a controller controlling the temperature adjuster to change the temperature of the target material in the tank such that oxygen in the target material is precipitated as metal oxide.
Abstract:
A filter may include: a first member having a first surface provided with a channel; and a second member set with a second surface thereof covering the channel. The first member may include a first passable portion that allows a fluid to pass between the first surface and a first space, which is defined beside a surface of the first member opposite to the first surface, through a first area of the channel. The second member may include a second passable portion that allows the fluid to pass between the second surface and a second space, which is defined beside a surface of the second member opposite to the second surface, through a second area of the channel distanced from the first area.
Abstract:
A target supply system includes a load lock chamber configured to contain a solid target substance, a solid target supply pipe connected to the load lock chamber, a pressure regulator configured to regulate an externally supplied gas pressure, a gas pressure supply pipe connected to the pressure regulator, a melting tank connected to both the solid target supply pipe and the gas pressure supply pipe, and configured to melt the solid target substance supplied from the load lock chamber via the solid target supply pipe to generate a liquid target substance, a nozzle configured to discharge the liquid target substance by a gas pressure supplied from the pressure regulator to the melting tank via the gas pressure supply pipe, and a buffer tank configured to communicate with the melting tank and supply a gas pressure thereto when the solid target substance is supplied to the melting tank.
Abstract:
A target supply device may include a tank configured to store a target substance, a pressure adjuster configured to adjust a pressure in the tank, a filter configured to filter the target substance in the tank, a nozzle configured to output a droplet of the target substance having passed through the filter, a droplet detector configured to detect outputting of the droplet from the nozzle, and a processor configured to control the pressure adjuster so that a pressure-increasing speed of the pressure in the tank is higher after detection of outputting of the droplet than before detection of outputting of the droplet, during a period in which the pressure in the tank is increased to a target pressure from a pressure at which outputting of the droplet is detected by the droplet detector for the first time after installation of the target supply device.
Abstract:
A target supply device includes a tank body portion holding a target substance; a communication portion connected to the tank body portion and including a filter that filters the melted target substance and a nozzle that discharges the target substance having passed through the filter; a main heater that heats the tank body portion; a sub-heater that heats the communication portion; and a control unit, the control unit being configured to set the main heater to a temperature higher than a melting point of the target substance before the target substance is melted, to set the sub-heater to a temperature lower than the melting point of the target substance until the target substance in the tank body portion is melted, and to set the sub-heater to a temperature higher than the melting point of the target substance after the target substance in the tank body portion is melted.
Abstract:
A vibrator unit may be configured to apply vibration to a target material supplied to an inside of a target flow path. The vibrator unit may include a vibration transmission member to be brought into contact with a first member including the target flow path therein, and a piezoelectric member to be brought into contact with the vibration transmission member. The piezoelectric member may be configured to vibrate in response to an electric signal from the outside. The vibration dumping rate of the vibration transmission member may be smaller than the vibration dumping rate of the first member.
Abstract:
An extreme ultraviolet light generation apparatus may include: a chamber in which extreme ultraviolet light is generated when a target is irradiated with a laser beam inside the chamber; a target supply part configured to supply the target into the chamber; and a target collector configured to collect the target which is supplied by the target supply part but is not irradiated with the laser beam in a collection container, by receiving the target on a receiving surface having a contact angle of equal to or smaller than 90 degrees with the target.
Abstract:
A target supply device may include: a tank including a cylindrical main body, a first end portion blocking an axial first end of the main body, and a second end portion blocking an axial second end of the main body; a nozzle provided to the first end portion of the tank and configured to output a target material contained inside the tank; and an inert gas supply unit configured to supply inert gas into the tank, in which the inert gas supply unit includes a gas flow path penetrating the second end portion of the tank and configured to guide the inert gas in a direction toward an inner wall of the main body.