Abstract:
A system for modulating a response signal includes functionalized particles configured to interact with target analytes, a detector configured to detect an analyte response signal transmitted from the body, a modulation source configured to modulate the analyte response signal, and a processor configured to non-invasively detect the one or more target analytes by differentiating the analyte response signal from a background signal, at least in part, based on the modulation. The analyte response signal is related to the interaction of the target analytes with the functionalized particles. In some examples, the system may also include magnetic particles and a magnetic field source sufficient to distribute the magnetic particles into a spatial arrangement in the body. The analyte response signal may be differentiated from the background signal, at least in part, based on modulation of the signals due, at least in part, to the spatial arrangement of the magnetic particles.
Abstract:
Embodiments described herein may relate to an unmanned aerial vehicle (UAV) navigating to a target in order to provide medical support. An illustrative method involves a UAV (a) determining an approximate target location associated with a target, (b) using a first navigation process to navigate the UAV to the approximate target location, where the first navigation process generates flight-control signals based on the approximate target location, (c) making a determination that the UAV is located at the approximate target location, and (d) in response to the determination that the UAV is located at the approximate target location, using a second navigation process to navigate the UAV to the target, wherein the second navigation process generates flight-control signals based on real-time localization of the target.
Abstract:
A wearable device includes a detector configured to detect a response signal transmitted from a portion of subsurface vasculature, the response signal being related to binding of a clinically-relevant analyte to functionalized particles present in a lumen of the subsurface vasculature. Program instructions stored in a computer readable medium of the device, and executable by a processor, may cause the device to determine a concentration of the clinically-relevant analyte based on the response signal detected by the detector; determine whether a medical condition is indicated based on at least the concentration of the clinically-relevant analyte; and, in response to a determination that the medical condition is indicated, transmit data representative of the medical condition via the communication interface. The device may also include a signal source configured to transmit an interrogating signal into the portion of subsurface vasculature, thereby generating a response signal in response to the interrogating signal.
Abstract:
A display system includes a wedge optical element, a photoactive layer, light director, and light modulator. The wedge optical element has a clear substrate. The photoactive layer receives emitted light that generates an image. The light director is disposed between the photoactive layer and the wedge optical element. The light modulator generates emitted light and is optically coupled to the wedge optical element to direct the emitted light to an angled side of the wedge optical element. The angled side of the wedge optical element is configured to reflect the emitted light toward a backside of the photoactive layer to generate an image viewable by a user on a frontside of the photoactive layer. The light director is disposed to receive the emitted light from the angled side of the wedge optical element and direct the emitted light toward propagating substantially normal to the backside of the photoactive layer.
Abstract:
A display tile includes a display panel and a fused fiber bundle overlay. The display panel includes display pixels and a bezel surrounding the display pixels. The fused fiber bundle overlay includes an input side mounted adjacent to the display panel and optically aligned with the display pixels to receive image light, an emission side opposite the input side to emit the image light, and an array of fused fibers each extending from the input side to the emission side and each including an input end and an emission end. At least a portion of the fused fibers are tapered.
Abstract:
A system for needle-free drawing of blood is disclosed. A device can include an evacuated negative-pressure barrel with a membrane sealing an aperture at a distal end, and a housing affixed to a proximal end. An accelerator barrel can be positioned within the negative-pressure barrel and fixed to the housing, with an open proximal end in a chamber in the housing, and an open distal end aligned with the aperture. The chamber can be filled with pressurized gas, and a trigger valve can hydrostatically separate the chamber from the open proximal end of the accelerator barrel. A micro-particle positioned within the accelerator barrel can be accelerated to high speed by an abrupt surge of gas by releasing the trigger valve. The micro-particle can attain enough momentum to pierce the aperture membrane and penetrate adjacent dermal tissue. A resulting micro-emergence of blood can be drawn into the negative pressure barrel.
Abstract:
The present disclosure relates to a deployment system for an unmanned aerial vehicle (UAV). In one aspect, an illustrative deployment system includes a communication system configured for receiving diagnostic data corresponding to an object held by a UAV, wherein the object has an expiration condition; and a logic module configured for (i) determining that the expiration condition has been satisfied based, at least in part, on the received diagnostic data, and (ii) responsive to determining that the expiration condition has been satisfied, initiating an action that includes sending to the UAV both (a) navigation data relating to a remedial facility, and (b) instructions to navigate to the remedial facility based, at least in part, on the navigation data.
Abstract:
A method and apparatus for gesture interaction with an image displayed on a painted wall is described. The method may include capturing image data of the image displayed on the painted wall and a user motion performed relative to the image. The method may also include analyzing the captured image data to determine a sequence of one or more physical movements of the user relative to the image displayed on the painted wall. The method may also include determining, based on the analysis, that the user motion is indicative of a gesture associated with the image displayed on the painted wall, and controlling a connected system in response to the gesture.
Abstract:
A method and apparatus for generating dynamic signage using a painted surface display system is described. The method may include capturing image data with at least a camera of a painted surface display system. The method may also include analyzing the image data to determine a real-world context proximate to a painted surface, wherein the painted surface is painted with a photo-active paint. The method may also include determining electronic signage data based on the determined real-world context. The method may also include generating a sign image from the determined electronic signage data based on the determined real-world context, and driving a spatial electromagnetic modulator to emit electromagnetic stimulation in the form of the sign image to cause the photo active paint to display the sign image.
Abstract:
A method and apparatus for gesture interaction with a photo-active painted surface is described. The method may include driving a spatial electromagnetic modulator to emit electromagnetic stimulation in the form of an image to cause photo-active paint to display the image. The method may also include capturing, with at least a camera of a painted surface display system, image data of the image displayed on the photo-active paint applied to a surface and a user motion performed relative to the image. The method may also include analyzing the captured image data to determine a sequence of one or more physical movements of the user relative to the image displayed on the photo-active paint. The method may also include determining, based on the analysis, that the user motion is indicative of a gesture, and driving the spatial electromagnetic modulator to update.