Abstract:
Planar, polarization insensitive, optical elements to control refraction of transmitted light in free space are disclosed. In one aspect, an optical element includes a substrate having a planar surface, and a polarization insensitive, high contrast, sub-wavelength grating composed of posts that extend from the planar surface. The grating has at least one region. Within each region, cross-sectional dimensions of the posts and/or lattice arrangement of the posts are nonperiodically varied to control refraction of light transmitted through the optical element.
Abstract:
Techniques relating to optical shuffling are described herein. In an example, a system for shuffling a plurality of optical beams is described. The system includes a plurality of sources to output respective beams of light. The system further includes a plurality of receivers to receive respective beams of light. The system further includes a shuffling assembly including a plurality of sub-wavelength grating (SWG) sections. Each of the plurality of SWG sections is for defining optical paths of the plurality of beams. The plurality of SWG sections includes at least one reflecting SWG section to reflect and direct light from a respective one of the plurality of sources toward a respective one of the plurality of receivers.
Abstract:
Apparatuses and methods for high density laser optics are provided. An example, of a laser optics apparatus includes a plurality of vertical cavity surface emitting lasers (VCSELs) in a monolithically integrated array, a high contrast grating (HCG) integrated with an aperture of a vertical cavity of each of the plurality of the VCSELs to enable emission of a single lasing wavelength of a plurality of lasing wavelengths, and a plurality of single mode waveguides, each integrated with a grating coupler, that are connected to each of the plurality of the integrated VCSELs and the HCGs, where each of the grating couplers is aligned to an integrated VCSEL and HCG.