Abstract:
Methods and systems may provide for determining a next active window for a platform and notifying one or more of a plurality of devices of the platform of the next active window being determined. Additionally, one or more of the plurality of devices may be notified of an onset of the next active window. In one example, a pre-warm message is issued to notify one or more of the plurality of devices of the next active window being determined.
Abstract:
An embodiment may include network controller to be comprised in a first node. The node may be communicatively coupled to a network and may include a host processor to execute an operating system environment. The operating system environment may include, at least in part, a communication protocol stack and an application. The circuitry may receive, at least in part, a packet from the network. The packet may include, at least in part, a header and payload. At least one portion of the payload may be associated with the application. The circuitry may issue at least one portion of the header to the stack. The circuitry may issue the at least one portion of the payload to a destination device in a manner that by-passes involvement of the stack. The destination device may be specified, at least in part, by the application. Many alternatives, variations, and modifications are possible.
Abstract:
A modular reconfigurable multi-server system for use in a wavelength-division-multiplexed based photonic burst switched (PBS) network with variable time slot provisioning. An optical high-speed I/O module within the multi-server system enables it to serve as an edge node in the PBS network. The optical I/O module statistically multiplexes the incoming packets (e.g., IP packets or Ethernet frames) received from a legacy network, generates control and data bursts, which are then scheduled for transmission over the PBS network. The optical I/O module then optically transmits and receives the scheduled optical bursts according to traffic priority and available network resources.
Abstract:
Disclosed are a system, method and device for selecting a mapping for a data path coupling path terminating equipment (PTE) at a first node to PTE at a second node. The first node may transmit a mapping request message to the second node specifying one or more candidate mappings. The second node may then reply with a selection of one of the candidate mappings or one or more alternative mappings.
Abstract:
A network adapter comprises a controller to change to a first mode from a second mode based on a number of transmit packets, sizes of received packets, and intervals between arrivals of the received packets. In one embodiment, the network controller further comprises a memory to buffer received packets, where the received packets are buffered for a longer period in the first mode than in the second mode.
Abstract:
A system and method for maintaining connectivity between a host system running an Always-On-Always-Connected (AOAC) application and an associated remote application server includes determining a timing interval Ti for sending keep-alive messages. The timing interval Ti may be determined by selecting a value for a timeout (Ti) to a value between a maximum timeout (Tmax) and a minimum timeout (Tmin), transmitting a keep-alive message, at an interval based on Ti, across a network connection between a client platform running an Always-On-Always-Connected (AOAC) application and a remote application server associated with the AOAC application, checking a status of the network connection, increasing the value for Tmin if the network connection is still active and decreasing the value for Tmax if the network connection has been dropped.
Abstract:
An embodiment may include circuitry to determine whether to issue at least one credit to at least one sender of at least one packet. The credit(s) may be to grant permission to the at least one sender to issue the at least one packet to at least one receiver of the at least one packet. The determination of whether to issue the credit(s) may be based, at least in part, upon whether a time in which the at least one receiver is in a relatively lower power state prior to issuance of the credit(s) is at least sufficient to provide at least a predetermined amount of reduction in power consumption. The relatively lower power state may be relative to a relatively higher power state of the at least one receiver that prevails at the issuance of the credit(s). Additionally or alternatively, the circuitry may be to receive such credit(s).
Abstract:
Certain embodiments herein relate to selective utilization of shared access points to facilitate optimized wireless communications. A wireless access point located at a home, residence, or other facility may be shared among other such access points to form a wireless network of shared access points across various regions or areas. One or more access points that provide an optimized wireless connection for user devices within range of the access points may be determined in certain embodiments herein. The determination may include comparing operational or performance information associated with the access points, such as link quality, quality of service, current load, backhaul connectivity information, etc., as well as pricing associated with the access points, to determine which one or more access points facilitate or provide optimized wireless communications between devices on a wireless network.