Abstract:
조립단위및 세립단위로드밸런싱사이에서매개하는기술은클러스터컴퓨팅디바이스의컴퓨팅노드및 네트워크제어기를포함한다. 컴퓨팅노드는네트워크제어기로부터수신된흐름정보를기반으로로컬흐름테이블에흐름엔트리를추가할수 있다. 컴퓨팅노드는흐름정보및 다음홉 정보를포함하는멀티캐스트네트워크패킷을클러스터디바이스의다른컴퓨팅노드로전송할수 있다. 컴퓨팅노드는클러스터디바이스의다른컴퓨팅노드로부터수신된멀티캐스트네트워크패킷을기반으로로컬흐름테이블에상이한흐름엔트리를그리고로컬다음홉 테이블에다음홉 엔트리를추가할수도있다. 컴퓨팅노드는로컬흐름테이블에추가된흐름엔트리를기반으로원격컴퓨팅디바이스로부터수신된네트워크패킷을로컬로처리하거나수신된네트워크패킷을클러스터디바이스의다른컴퓨팅노드로전달할수 있다.
Abstract:
PROBLEM TO BE SOLVED: To control outgoing network activities and coordinate them with platform activity to fully benefit from longer term idleness, which may allow platform components to reach deeper sleep states, thus prolonging battery life. SOLUTION: The platform activities 102 synchronizes with applications 131 to create a long period of idleness of a platform. A communication device informs a host of expected idle durations, and holds received traffic by the communication device. Applications having non critical outgoing messages or engaging in periodic network activity register with an OS-application interface 142 for coordinating application task and platform activities. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
Generally discussed herein are systems, devices, and methods for managing content of an information centric network (ICN). A component of an ICN can include a memory including an extended content store that includes content from at least one other component of the ICN, and first attributes of the content, the first attributes including a content popularity value that indicates a number of requests for the content, and processing circuitry to increment the content popularity value in response to a transmission of a first content packet that includes the content, the first content packet transmitted in response to receiving an interest packet.
Abstract:
Routing mechanisms for routing data via a plurality of optical switched (OS) networks, such as optical burst-switched (OBS) networks. A plurality of OBS networks are connected to form an enterprise network, which may further include non-OBS networks such as LANs and the like. Each of the OBS networks is modeled as an autonomous system (AS), and one or more edge nodes of each OBS network are designated as external gateway protocol (EGP) routers. Each EGP router maintains a routing table identifying routes that may be used to reach destination networks. The routing table is dynamically updated via update messages that comprise an extension to the Border Gateway Protocol (BGP) and account for optical routing considerations particular to OBS networks. In response to a routing request, data is sent from an internal node using an internal routing protocol to a BGP router edge node. The BGP router edge node then determines a next network hop based on current routing information in its routing table, and the data is routed using an external routing protocol. At the same time, data is routed within an individual OBS network using an internal routing protocol under which data are sent as data bursts via reserved lightpaths.
Abstract:
A network adapter comprises a controller to change to a first mode from a second mode based on a number of transmit packets, sizes of received packets, and intervals between arrivals of the received packets. In one embodiment, the network controller further comprises a memory to buffer received packets, where the received packets are buffered for a longer period in the first mode than in the second mode.
Abstract:
An optical network, which includes edge and switching nodes, optically communicate information formatted into bursts that are included in one or more optical channel transport unit (OTU) frames that are based on ITU-T recommendation G.709. The overhead portion of the OTU frame can include all of the fields defined in the G.709 standard, except that the two reserved bits are used to define an OTU frame type. When the FEC function is not used, the OTU frame can be arbitrarily partitioned to carry optical burst information. The information can be either control and/or data bursts or metadata related to the optical network and/or optical burst flow. When the FEC function is used, the OTU frame is used to include optical control or data bursts or optical metadata in the payload portion of the G.709 OTU frame.
Abstract:
Un aparato, que comprende: una estación inalámbrica, STA (205), prevista para transitar comunicaciones inalámbricas desde un primer punto de acceso, AP1 (210), a un segundo punto de acceso, AP2 (215), en una red inalámbrica que cumple con IEEE 802.11n que soporta una Unidad de Datos de Servicio MAC, MSDU, agregación, y en el que dicha STA (205), durante dicha transición de comunicaciones inalámbricas, está prevista para utilizar una Sesión Prolongada Post-Transición y un Intervalo de Actividad de la Sesión Prolongada Post-Transición, en que la Sesión Prolongada Post-Transición es una prolongación de la sesión para el Intervalo de Actividad de la Sesión Prolongada Post-Transición, siendo un período de tiempo en que la STA (205) y el AP1 (210) mantienen una sesión privada después de la transición, y en que cuando dicha STA (205) realiza una itinerancia a AP2 (215) dicha STA (205) está prevista para enviar una indicación de Modo de Ahorro de Potencia a AP1 (210), en respuesta a la invitación de Modo de Ahorro de Potencia desde la STA (205), el AP1 (210) está previsto para almacenar en memoria tampón datos entrantes para la STA (205). después de enviar la indicación de Modo de Ahorro de Potencia, dicha STA (205) está prevista para conducir un proceso de real Nueva Asociación y una derivación clave con AP2 (215), cuando dicha STA (205) recibe una respuesta de Nueva Asociación desde el AP2 (215), dicha STA (205) está prevista para enviar una indicación de Modo de Ahorro de Potencia a AP2 (215) para hacer que el AP2 (215) almacén los datos entrantes para la STA (205), y dicha STA (205) está dispuesta para cambiar a AP1 (210) para recibir cualquier dato almacenado en memoria tampón por AP1 (210) mientras AP2 (215) almacena en memoria tampón datos para la STA (205) mientras la STA (205) recibe datos almacenados en memoria tampón desde el AP1 (210).
Abstract:
An optical network, which includes edge and switching nodes, optically communicate information formatted into bursts that are included in one or more optical channel transport unit (OTU) frames that are based on ITU-T recommendation G.709. The overhead portion of the OTU frame can include all of the fields defined in the G.709 standard, except that the two reserved bits are used to define an OTU frame type. When the FEC function is not used, the OTU frame can be arbitrarily partitioned to carry optical burst information. The information can be either control and/or data bursts or metadata related to the optical network and/or optical burst flow. When the FEC function is used, the OTU frame is used to include optical control or data bursts or optical metadata in the payload portion of the G.709 OTU frame.
Abstract:
An embodiment may include network controller to be comprised in a first node. The node may be communicatively coupled to a network and may include a host processor to execute an operating system environment. The operating system environment may include, at least in part, a communication protocol stack and an application. The circuitry may receive, at least in part, a packet from the network. The packet may include, at least in part, a header and payload. At least one portion of the payload may be associated with the application. The circuitry may issue at least one portion of the header to the stack. The circuitry may issue the at least one portion of the payload to a destination device in a manner that by-passes involvement of the stack. The destination device may be specified, at least in part, by the application. Many alternatives, variations, and modifications are possible.