Abstract:
A method and wireless communication system for providing channel assignment information used to support an uplink (UL) channel and a downlink (DL) channel. The system includes at least one Node-B and at least one wireless transmit/receive unit (WTRU). The WTRU communicates with the Node-B via a common control channel, the UL channel and the DL channel. The WTRU receives a message from the Node-B via the common control channel. The message includes an indication of whether the message is intended for assigning radio resources to the UL channel or the DL channel. The WTRU determines whether the message is intended for the WTRU and, if so, the WTRU determines whether the message is for assigning radio resources to the UL channel or the DL channel. The WTRU takes an appropriate action based on whether the message is for assigning radio resources to the UL channel or the DL channel.
Abstract:
A wireless multi-cell communication system and a method for configuring a cell for enhanced uplink (EU) services. The wireless communication system includes at least one wireless transmit/receive unit (WTRU), at least one Node-B and a radio network controller (RNC). The RNC configures EU services for the WTRU and the Node-B in at least one cell of the system. At least one of the WTRU and the Node-B report EU traffic statistics and EU performance statistics to the RNC. The RNC adjusts the configuration of the EU services for the WTRU and the Node-B in the at least one cell in accordance with the received EU traffic statistics and the EU performance statistics.
Abstract:
A method and wireless communication system for requesting and obtaining transmit power control (TPC) information. The system includes at least one access point (AP) (110) and at least one wireless transmit/receive unit (WTRU) (105). When the AP (110) decides to adapt the transmit power level of the WTRU (105), the AP (110) transmits a TPC request frame to the WTRU (105). In response to receiving the TPC request frame, the WTRU (105) performs one or more physical measurements and sends a TPC report frame back to the AP (110).
Abstract:
A method and wireless communication system for transferring management information. The system includes at least one access point (AP) including a first management entity and a second management entity, and at least one wireless transmit/receive unit (WTRU) including a third management entity and a fourth management entity. The AP transmits a management information base (MIB) information request action frame including a category field and an action details field to the WTRU. In response to receiving the information request action frame, the WTRU determines whether or not to provide management information to the AP. When the WTRU provides management information to the AP, the WTRU compiles management information stored in a MIB located in the WTRU and transmits a MIB information report action frame to the AP. The MIB lists a plurality of tables containing information associated with radio resource management (RRM) and at least one table containing physical layer measurements.
Abstract:
In telecommunications systems, a plurality of User Equipment (UEs) communicate with a common station via communication signals which have a system frame format. Commonly used time slots (CUTSs) are available for common use by the UEs for transmitting code identified signals for a specific uplink channel. The UEs select a code identifier from a plurality of identifiers, such as midambles. A UE transmission with a selected code identifier in a selected CUTS will fail if another UE transmits with the same code identifier in the same CUTS or if the UE transmission lacks sufficient power. Communication efficiency is enhanced by determining the number of successful and failed UE transmission in CUTSs per frame and adjusting one or more communication parameters in response to said determination such as a parameter upon which the UEs determine an access rate for transmitting in CUTSs and/or a power control parameter.
Abstract:
A method and apparatus for operating a wireless transmit receive unit (WTRU) in basic transmission time interval (BTTI) and reduced transmission time interval (RTTI) mode includes a WTRU in RTTI mode and a WTRU in BTTI mode receiving a plurality of coded radio blocks, the WTRU in RTTI mode decoding all of the plurality of coded radio blocks and the WTRU is in BTTI mode decoding a portion of the plurality of coded radio blocks.
Abstract:
A method and apparatus for minimizing redundant enhanced uplink (EU) allocation requests and fault-tolerating EU transmission failures that occur between a wireless transmit/receive unit (WTRU) (102) and a Node-B (104). The WTRU (102) transmits an enhanced dedicated channel (E-DCH) allocation request to the Node-B (104) over an uplink (UL) EU channel (110). In one embodiment, if E-DCH allocation cannot be provided within a predetermined time period, the Node-B sends an acknowledgement message to the WTRU via a downlink (DL) EU signaling channel (112) without sending E-DCH allocation information. The request is queued in the Node-B and the WTRU refrains from transmitting the same request until after the time period expires or resources become available. In another embodiment, appropriate actions are taken to correct EU transmission failures by determining whether an E-DCH allocation request was unsuccessfully delivered via the UL EU channel or whether channel allocation information was unsuccessfully delivered via the DL EU signaling channel.
Abstract:
A wireless communication method and apparatus for transferring buffered enhanced uplink (EU) data from a wireless transmit/receive unit (WTRU) (105), i.e., a mobile station, to a Node-B (110). The EU data is generated and stored in a buffer (120) of the WTRU (105). The WTRU (105) transmits a message to the Node-B (110) including a request (210) for a desired transport format combination (TFC) or data traffic indicator. The Node-B (110) schedules one or more allowed EU data transmissions between the WTRU (105) and the Node-B (110) by transmitting an EU data scheduling message (215) to the WTRU (105). The WTRU (105) transmits all of the EU data stored in the buffer (120) to the Node-B (110) if the allowed EU data transmissions are sufficient to support transmission of all of the EU data stored in the buffer (120). Otherwise, the WTRU (105) transmits a portion of the EU data along with the desired TFC or detailed traffic volume measurement (TVM) information to the Node-B (110).
Abstract:
A method and system for controlling the transmission power of at least one downlink (DL) enhanced uplink (EU) signaling channel such that enhanced dedicated channel (E-DCH) DL signaling is delivered efficiently and reliably. The system includes at least one wireless transmit/receive unit (WTRU), at least one Node-B and a radio network controller (RNC). At least one of the WTRU and the Node-B compute EU transmission failure statistics on the DL EU signaling channel and report the EU transmission failure statistics to the RNC. The RNC then adjusts a transmission power offset of the DL EU signaling channel to be used in determining transmission power level of the DL EU signaling channel at the Node-B based on the EU transmission failure statistics.
Abstract:
A method and system is disclosed for providing intelligent remote access to wireless transmit/receive units (WTRUs). A translator is provided in base stations so that system controllers may issue application level network management protocol messages to base stations. The messages are transmitted by the translator to a medium access control (MAC) messaging protocol and forwarded to WTRUs. Information provided by WTRUs to base stations is translated from a MAC protocol to an application level network management protocol so that the information may be accessed by system controllers using application level network management protocols.