Abstract:
A wireless communication system including at least one IDDD 802 multi-stack wireless transmt/receive unit (WTRU) (110) and a plurality of technologically diversified acess networks, such as IEEE 802.X networks and Third Generation Partnership Project (3GPP) networks, that are concurrently deployed. Both the multi-stack WTRU (110) and the technologically diversified networks includ a media indipendent handover (MIH) function. The WTRU is configured to read MIH information transmitted from one of the IEEE 802.X networks, trigger 3GPP authentication and atuhorization procedures based on the MIH information, obtain a local Internet Protocol (IP) address, establish a tunnel to a packet data gateway (PDG) un a 3GPP core network, constructed a care of address (CoA) and register the CoA with a home agent (142) of the WTRU, whereby data destined for the WTRU (110) is routed via the home agent (142) through a new tunnel established between the home agent (142) and a foreign agent (136) based on the CoA. .
Abstract:
A communication method, system and components are provided that includes use of traffic predictions determined by a wireless transmit/receive unit (WTRU). Preferably, the invention is implemented by predicting traffic in a wireless local area network (WLAN), between a WTRU and a WLAN access point (AP) that begins by determining a traffic level at the WTRU. Traffic prediction information is sent by the WTRU to the AP where it is used in conjunction with the generation of commands sent to WTRUs to control the manner of access by WTRUs to the WLAN via the AP. WTRUs receive instructions as to admission and are preferably configured to receive and implement instructions to adjust the contention window used by the WTRU to transmit data.
Abstract:
A method and system for managing radio resources in a time-slotted wireless communication system is based on the quality of service (QoS) information of a user. A plurality of time slots of a radio resource are sorted into a plurality of different categories, such as high QoS time slots, high capacity time slots, and balanced time slots (305). Each category is associated with a different level of QoS. QoS information with respect to a user is obtained in response to a radio resource request received from the user (310). The user is associated with a particular category of time slots based on the QoS information of the user (315).
Abstract:
The present invention is related to a method and system for sending and reducing uplink feedback signaling by a wireless transmit/receive unit (WTRU) related to transmission of multimedia broadcast multi cast service (MBMS) data over a high speed down link packet access (HSDPA) channel. A Node B may pre-allocate a time frequency region or a common channelization code for the feedback. A triggering criterion for reporting a channel quality indicator (CQI) is set and WTRUs send a CQI to a Node B only if the triggering criterion is satisfied. The triggering criterion may be a current operating CQI value at the Node B, or based on erroneous transport block reception statistics, or a predetermined time period. A feedback reduction method related to ACK/NACK includes the WTRU sending an indication of an average number of transmissions needed to successfully decode the data instead of sending an ACK/NACK for every transmission interval.
Abstract:
A method and system for performing dynamic link selection (DLS) between transmit/receive units (TRUs). A first TRU determines whether a second TRU has multiple interfaces with a DLS capability. If the second TRU has multiple interfaces with the DLS capability, the first TRU sends a packet to the second TRU through a selected link. The first TRU then receives a report from the second TRU and evaluates quality of the link based on the report. The first TRU selects a link for a new packet in accordance with a predetermined criteria and the quality of the link. If the second TRU does not have multiple interfaces with the DLS capability, the first TRU periodically sends probe packets to the second TRU via all available links. The second TRU sends response packets and the first TRU evaluates the quality of link based on statistics of the response packets.
Abstract:
A method and system for performing dynamic link selection (DLS) between transmit/receive units (TRUs). A first TRU determines whether a second TRU has multiple interfaces with a DLS capability. If the second TRU has multiple interfaces with the DLS capability, the first TRU sends a packet to the second TRU through a selected link. The first TRU then receives a report from the second TRU and evaluates quality of the link based on the report. The first TRU selects a link for a new packet in accordance with a predetermined criteria and the quality of the link. If the second TRU does not have multiple interfaces with the DLS capability, the first TRU periodically sends probe packets to the second TRU via all available links. The second TRU sends response packets and the first TRU evaluates the quality of link based on statistics of the response packets.
Abstract:
The invention includes a method and apparatus for mobility handling across different wireless technologies by efficiently performing alternate network discovery and enabling a mobile station to select the most desirable candidate radio access technology, depending on parameters such as location and network policy settings.
Abstract:
A method for call admission control in a fast dynamic channel allocation wireless communication system begins by requesting that a call be admitted. System measurement results are obtained and timeslot sequences are generated by determining a figure of merit for each timeslot. A code set is determined and an attempt is made to assign a code set to a timeslot sequence, wherein each successful assignment is considered to be a solution. The solution having the lowest weighted total interference signal code power is selected, and codes are allocated for the selected solution. The physical resource allocation information is recorded and a response to the call admission request is issued.
Abstract:
In a wireless communication system including an access point and at least one wireless transmit/receive unit (WTRU), a method for adaptive radio resource management begins by examining a frame error rate value of a WTRU. Then, a channel utilization value of the WTRU and a current data rate of the WTRU are examined. System parameters for the WTRU are adjusted based on the examined variables.
Abstract:
A method for management of real-time system algorithms to achieve optimal efficiency which provides for dynamically managing priorities in a complex real-time system, considering the dynamic requirements of the system. A preferred embodiment describes the management of a plurality of RRM algorithms, including algorithms for SCC escape, LM escape, SCC rate control, and F-DCA background. More specifically, one exemplary embodiment assists in deciding: when to increase algorithm priorities, how to increase/decrease algorithm priorities, how to assign priority parameters, and how to dynamically manage priorities in the system, to result in optimal system efficiency.