Abstract:
A method and apparatus for executing attachment procedures in a long term evolution (LTE) system to accommodate a single tunnel approach. Third Generation Partnership Program (3GPP) packet data protocol (PDP) context activation procedures are used for the allocation of an Internet protocol (IP) address and the establishment of tunneling between an evolved Node-B (eNodeB) and an anchor node, while allowing multiple radio access bearers (RABs) to be mapped to one PDP context for different quality of service (QoS) requirements. Thus, one PDP context is sufficient for a wireless transmit/receive unit (WTRU) within a single packet data network (PDN). Multiple PDP contexts can be established for special requirements, (e.g., bundled services), or when the WTRU connects to multiple PDNs.
Abstract:
A method for battery conservation in a wireless communication system begins with requesting a battery level measurement from a wireless transmit/receive unit (WTRU) (102) by a radio network controller (RNC) (104). The battery level is measured at the WTRU (102) and is reported to the RNC (104). The battery level measurement is stored in the RNC (104), where it can be accessed by radio resource management (RRM) (100) procedures. The battery level measurement is applied to the RRM (100) procedures by making adjustments to the procedures based on the battery level measurement, whereby the battery of the WTRU (102) is conserved.
Abstract:
The present invention is related to a method and system for multi-cell coordination for multimedia broadcast multicast services (MBMS) in a wireless communication system. An MBMS multi-cell coordination unit is provided to coordinate a plurality of evolved Node-Bs (eNodeBs) for transmission of MBMS data synchronously in multiple cells of the same single frequency network (SFN). The MBMS multi-cell coordination unit may be located in an access gateway or in an eNodeB. An MBMS multi-cell scheduling scheme may be preconfigured for the eNodeBs for synchronization. Alternatively, the eNodeBs may be synchronized dynamically.
Abstract:
A method and apparatus for triggering procedures to handover an ongoing communication session between a mobile station (MS) and a correspondent node (CoN) from via a first network of a first type to via a second network of a different type. Communication session continuity is maintained by transferring communication session context information when a handover is imminent from a network component in a first network path to a network component in a second network path, and by forwarding downlink and uplink signals via the network components in both the first and second network paths until the ongoing communication session can be established via the second network path. The context information includes the session communication parameters, such that the second network path can allocate resources and establish routing between the MS and the CoN.
Abstract:
A multiple radio access technology (RAT) apparatus with mobility middleware provides a user with access to various RAT networks, such as a frequency division duplex (FDD) network and a wireless local area network (WLAN). In one embodiment, the apparatus is a dual mode FDD/WLAN converged wireless communication handset which includes a terminal equipment (TE) module having mobility middleware, an applications and protocols processor and a terminal interface (TI). The dual mode FDD/WLAN converged wireless communication handset further includes a user services identity module (USIM), a mobile termination (MT) module and a protocol stack which interface with the mobility middleware via a plurality of links. In another embodiment, the multi-RAT apparatus is terminal equipment which includes a mobility middleware core module, a mobility middleware communication module, a driver and an insertably removable wireless communication device for providing a multiple radio transport medium to applications running in the terminal equipment.
Abstract:
A method for transmitting multimedia broadcast multicast services (MBMS) in an MBMS dedicated cell. The method includes a wireless transmit/receive unit (WTRU) receiving a broadcast channel (BCH), wherein the BCH includes cell information.
Abstract:
A multiple radio access technology (RAT) apparatus with mobility middleware provides a user with access to various RAT networks, such as a frequency division duplex (FDD) network and a wireless local area network (WLAN). In one embodiment, the apparatus is a dual mode FDD/WLAN converged wireless communication handset which includes a terminal equipment (TE) module having mobility middleware, an applications and protocols processor and a terminal interface (TI). The dual mode FDD/WLAN converged wireless communication handset further includes a user services identity module (USIM), a mobile termination (MT) module and a protocol stack which interface with the mobility middleware via a plurality of links. In another embodiment, the multi-RAT apparatus is terminal equipment which includes a mobility middleware core module, a mobility middleware communication module, a driver and an insertably removable wireless communication device for providing a multiple radio transport medium to applications running in the terminal equipment.
Abstract:
The present invention relates to a method for confirming the delivery of a data packet in a mesh network by sending an acknowledgement (ACK) to an ingress mesh point (IMP). A mesh network comprises a plurality of mesh points that are wirelessly linked together. A data packet sent by a station (STA) is received by an IMP. A MAC frame is generated for transmission of the data packet and the frame is forwarded to an egress mesh point (EMP) in order to provide a service by the mesh network. The MAC frame includes a field comprising an IMP address and an EMP address. When the EMP, (or optionally an intermediate mesh point), receives a data packet successfully, the EMP or the intermediate mesh point sends an ACK to the IMP or preceding mesh point.
Abstract:
The present invention is a method and apparatus for minimizing power consumption in a converged WTRU. In a preferred embodiment, power consumption is minimized by coordinating battery management of the various RATs supported by the converged WTRU. A coordinated multi-RAT battery management (CMRBM) unit is used by the converged WTRU to minimize power consumption. The CMRBM unit monitors various power and link metrics of the various RATs supported by the converged WTRU, and coordinates power states of the converged WTRU.
Abstract:
A multi-node communication system and method used to request, report and collect destination-node-based measurements and route-based measurements is disclosed. The communication system may be a mesh network including a plurality of mesh points (MPs). In one embodiment, a destination-node-based measurement request is sent to one or more destination nodes via destination-unicast, destination-multicast, or destination-broadcast, using routes specified via next-hop-unicast, next-hop-multicast, or next-hop-broadcast addressing. In another embodiment, a source node sends a measurement request message to a final destination node, whereby each node along the route individually sends a measurement report message to the source node. Alternatively, measurement results of each node are combined and appended to the measurement request message, and a measurement report message including the combined measurement results is sent to the source node.