Abstract:
A method and apparatus for scaling a soft bit for decoding in a wireless communication system are described. A scaling factor is calculated for a received symbol based'on an estimated signal-to-noise ratio (SNR) of the received symbol and the scaling factor is applied to a soft bit of the received symbol. A multiple-input multiple-output (MIMO) scheme may be implemented to transmit multiple data streams. In such case, a soft bit of a received symbol on each data stream is scaled by a scaling factor for the received symbol on each data stream.
Abstract:
In an orthogonal frequency division multiple access (OFDMA) system including at least one base station and at least one wireless transmit/receive unit (WTRU), sub-carriers are allocated for data transmissions to multiple access WTRUs, where sub-carriers are allocated according to a consecutive sub-carrier allocation (CSA) type and a distributed sub-carrier allocation (DSA) type. Pilot signals with distributed pilot sub-carriers are transmitted and measured at each WTRU to obtain a channel quality metric for each pilot sub-carrier. Each WTRU sends feedback to the base station reporting channel quality based on the measured channel quality metrics. An allocation type is selected and adaptively switched according to channel variations in time and frequency domain.
Abstract:
A method and apparatus for constraining power amplifier (PA) imbalance includes using a constant modulus (CM) criterion to ensure PA balance whe using differential feedback. An approach of combined differential and non- differential feedback is considered.
Abstract:
A method and apparatus generates a codebook and associated scheduling and control signaling. A plurality of channel combinations is generated for a plurality of wireless transmit receive units (WTRUs). The channel for each WTRU is quantized based on the WTRU codebook. A codebook for beamforming is generated for a plurality of WTRUs. The codebook includes a plurality of beamforming matrices. All possible beamforming matrices may be computed and the codebook may be quantized.
Abstract:
A method and apparatus for reducing a peak-to-average power ratio (PAPR) in a multiple-input multiple-output (MIMO) wireless communication system are disclosed. Transmit beamforming or precoding is performed on transmit symbols based on a channel matrix. For feedback, channel matrices may be averaged over multiple subcarriers and the averaged channel matrices may be further quantized. In order to reduce the PAPR, amplitude clipping may be performed on the symbols after the transmit processing. The amplitude clipping may be performed by hard clipping, soft clipping, or smooth clipping.
Abstract:
A method and apparatus for implementing spatial processing with unequal modulation and coding schemes (MCSs) or stream-dependent MCSs are disclosed. Input data may be parsed into a plurality of data streams, and spatial processing is performed on the data streams to generate a plurality of spatial streams. An MCS for each data stream is selected independently. The spatial streams are transmitted via multiple transmit antennas. At least one of the techniques of space time block coding (STBC), space frequency block coding (SFBC), quasi-orthogonal Alamouti coding, time reversed space time block coding, linear spatial processing and cyclic delay diversity (CDD) may be performed on the data/spatial streams. An antennal mapping matrix may then be applied to the spatial streams. The spatial streams are transmitted via multiple transmit antennas. The MCS for each data stream may be determined based on a signal-to-noise ratio of each spatial stream associated with the data stream.
Abstract:
A method and system is disclosed for enhancing reception of wireless communication signals. A beam pattern including at least one set of beams is generated. Where the beam pattern includes at least two sets of beams, the beam sets may be offset with respect to each other and alternated to enhance reception. Beams may be selected for data processing based on a signal-to-noise ratio (SNR) and may be maximal-ratio combined where signals from a single WTRU are detected within more than one beam and are used for data processing.
Abstract:
A method and system for automatic gain control (AGC) in a TDD communication system, wherein each time slot of the communication signal contains a preamble in binary phase shift keying (BPSK) format, located at the beginning of the time slot. The channel estimation by the receiver is improved since the preamble allows AGC to quickly estimate the signal strength and adjust the gain accordingly. This permits all data symbols within the data burst, which follows the preamble, to be correctly received, and results in a midamble channel estimate that is much more accurate. It also allows the AGC circuit within the TDD receiver to be greatly simplified.