Abstract:
Eine photovoltaische Zelle mit einer abgestuft dotierten Region, beispielsweise einem abgestuften Emitter, und ein Verfahren zur Herstellung von photovoltaischen Zellen mit abgestuft dotierten Regionen, beispielsweise abgestuften Emittern, sind offenbart. Die Dotierung wird über die Oberfläche eingestellt, um den Widerstands-Leistungsverlust (I2R) zu minimieren. Die abgestuften Emitter liefern eine abgestufte Änderung in dem Schichtwiderstand über dem gesamten Abstand zwischen den Linien. Das abgestufte Emitterprofil kann einen niedrigeren Schichtwiderstand nahe bei den Metalllinien und einen höheren Schichtwiderstand weiter weg von den Metalllinienkanten aufweisen. Der Schichtwiderstand wird so abgestuft, dass der Schichtwiderstand geringer ist, wo die I2R-Leistungsverluste aufgrund von Stromstau am höchsten sind. Ein Vorteil des abgestuften Emitters gegenüber selektiven Emittern ist ein verbesserter Wirkungsgrad. Ein zusätzlicher Vorteil der abgestuften Emitter gegenüber den selektiven Emittern ist eine verbesserte Leichtigkeit bei der Ausrichtung der Metallisierung gegenüber den Regionen mit niedrigem Schichtwiderstand.
Abstract:
A grid for minimizing effects of ion divergence in plasma ion implant. The plasma grid is made of a flat plate having a plurality of holes, wherein the holes are arranged in a plurality of rows and a plurality of columns thereby forming beamlets of ions that diverge in one direction. A mask is used to form the implanted shapes on the wafer, wherein the holes in the mask are oriented orthogonally to the direction of beamlet divergence.
Abstract:
A system for processing substrates has a vacuum enclosure and a processing chamber situated to process wafers in a processing zone inside the vacuum enclosure. Two rail assemblies are provided, one on each side of the processing zone. Two chuck arrays ride, each on one of the rail assemblies, such that each is cantilevered on one rail assemblies and support a plurality of chucks. The rail assemblies are coupled to an elevation mechanism that places the rails in upper position for processing and at lower position for returning the chuck assemblies for loading new wafers. A pickup head assembly loads wafers from a conveyor onto the chuck assemblies. The pickup head has plurality of electrostatic chucks that pick up the wafers from the front side of the wafers.
Abstract:
A chuck (300, 400, 900) for wafer processing that counters the deleterious effects of thermal expansion of the wafer (308, 408, 608). Also, a combination of chuck (300, 400, 900) and shadow mask arrangement that maintains relative alignment between openings in the mask and the wafer in spite of thermal expansion of the wafer (308, 408, 608). A method for fabricating a solar cell by ion implant, while maintaining relative alignment of the implanted features during thermal expansion of the wafer.
Abstract:
A grid for minimizing effects of ion divergence in plasma ion implant. The plasma grid is made of a flat plate having a plurality of holes, wherein the holes are arranged in a plurality of rows and a plurality of columns thereby forming beam lets (115, 615) of ions that diverge in one direction. A mask (125, 625, 725) is used to form the implanted shapes on the wafer (120, 620), wherein the holes in the mask are oriented orthogonally to the direction of beamlet divergence.
Abstract:
An adjustable shadow mask implantation system comprising: an ion source configured to provides ions; and an shadow mask assembly configured to selectively allow ions from the ion source to pass there through to a substrate where they are implanted, wherein the shadow mask assembly is configured to adjust between a first position and a second position, wherein the shadow mask assembly enables ion implantation of multiple substantially parallel lines absent any lines with an intersecting orientation with respect to the multiple substantially parallel lines when set in the first position, and wherein the shadow mask assembly enables ion implantation of multiple substantially parallel lines and a line with an intersecting orientation with respect to the multiple substantially parallel lines when set in the second position.
Abstract:
An apparatus and methods for ion implantation of solar cells. The disclosure provide enhanced throughput and recued or elimination of defects after SPER anneal step. The substrate is continually implanted using continuous high dose-rate implantation, leading to efficient defect accumulation, i.e., amorphization, while suppressing dynamic self-annealing.
Abstract:
A method of ion implantation comprising: providing a plasma within a plasma region of a chamber; positively biasing a first grid plate, wherein the first grid plate comprises a plurality of apertures; negatively biasing a second grid plate, wherein the second grid plate comprises a plurality of apertures; flowing ions from the plasma in the plasma region through the apertures in the positively-biased first grid plate; flowing at least a portion of the ions that flowed through the apertures in the positively-biased first grid plate through the apertures in the negatively-biased second grid plate; and implanting a substrate with at least a portion of the ions that flowed through the apertures in the negatively-biased second grid plate.
Abstract:
A method of fabricating a solar cell comprising: providing a semiconducting wafer having a front surface, a back surface, and a background doped region; performing a set of ion implantations of dopant into the semiconducting wafer to form a back alternatingly-doped region extending from the back surface of the semiconducting wafer to a location between the back surface and the front surface, wherein the back doped region comprises laterally alternating first back doped regions and second back doped regions, and wherein the first back doped regions comprise a different charge type than the second back doped regions and the background doped region; and disposing a back metal contact layer onto the back surface of the semiconducting wafer, wherein the back metal contact layer is aligned over the first and second back doped regions and is configured to conduct electrical charge from the first and second back doped regions.