Abstract:
Disclosed is a method, system, and computer program product for implementing controlled breaks using sub-resolution assist features. Sub-resolution bridging features are added to implement controlled breaks between features on the layout. The bridging features may also be used to facilitate or optimize multiple mask/exposure techniques that split a layout or features on a layout to address pitch problems.
Abstract:
A semiconductor chip mounting component includes a support structure adapted to engage a semiconductor chip. The support structure has a top surface, a bottom surface, and a gap extending through the support structure for defining first and second portions of the support structure on opposite sides of the gap. The support structure includes at least one elongated bus disposed alongside the gap, on the second portion of the support structure. The support structure includes a plurality of electrically conductive leads, each lead having a connection section extending across the gap, the connection section having a first end disposed on the first portion of the support structure, and a second end secured to the bus. Each lead includes a frangible section disposed between the first and second ends of the connection section, the frangible section having a cross-sectional area that is smaller than a cross-sectional area of the connection section. The gap is open at the bottom surface of the support structure. A semiconductor chip is disposed beneath the bottom surface of the support structure. The leads are adapted to be bonded to contacts on the semiconductor chip by breaking the frangible sections of the leads so as to disconnect the second ends of the leads from the bus and engage the leads with the contacts of the semiconductor chip.
Abstract:
A connection component for electrically connecting a semiconductor chip to support substrate incorporates a preferably dielectric supporting structure (70) defining gaps (40). Leads extend across these gaps so that the leads are supported both sides of the gap (66, 70). The leads therefore can be positioned approximately in registration to contacts on the chip by aligning the connection component with the chip. Each lead is arranged so that one end can be displaced relative to the supporting structure when a downward force is applied to the lead. This allows the leads to be connected to the contacts on the chip by engaging each lead with a tool and forcing the lead downwardly against the contact. Preferably, each lead incorporates a frangible section (72) adjacent one side of the gap and the frangible section is broken when the lead is engaged with the contact. Final alignment of the leads with the contacts on the chip is provided by the bonding tool which has features adapted to control the position of the lead.
Abstract:
Apparatuses and methods of shuttering glasses are disclosed. One apparatus includes a first lens operable to blank for a first blocking time, a second lens operable to blank for a second blocking time, and a controller for controllably setting at least one of the first blocking time and the second blocking time.
Abstract:
Disclosed are a method, apparatus, and program product for routing an electronic design using double patenting that is correct by construction. The layout that has been routed will by construction be designed to allow successful manufacturing with double patenting, since the router will not allow a routing configuration in the layout that cannot be successfully manufactured with double patterning.
Abstract:
Disclosed is a method, system, and computer program product for implementing controlled breaks using sub-resolution assist features. Sub-resolution bridging features are added to implement controlled breaks between features on the layout. The bridging features may also be used to facilitate or optimize multiple mask/exposure techniques that split a layout or features on a layout to address pitch problems.
Abstract:
A connection component for electrically connecting a semiconductor chip to a support substrate incorporates a preferably dielectric supporting structure defining gaps. Leads extend across these gaps so that the leads are supported on both sides of the gap. The leads therefore can be positioned approximately in registration to contacts on the chip by aligning the connection component with the chip. Each lead is arranged so that one end can be displaced relative to the supporting structure when a downward force is applied to the lead. This allows the leads to be connected to the contacts on the chip by engaging each lead with a tool and forcing the lead downwardly against the contact. Preferably, each lead incorporates a frangible section adjacent one side of the gap connecting one end of the lead connection section to a bus extending alongside the gap. The frangible section is broken when the lead is engaged with the contact.
Abstract:
In a semiconductor inner lead bonding process, a connection component having leads is disposed on the chip surface so that the leads lie above the contacts. A bond region of each lead is forced downwardly by a tool into engagement with a contact on the chip while a first or proximal end of the lead remains attached to a dielectric support structure. The lead is deformed into an S-shaped configuration by moving the bonding tool horizontally towards the proximal or first end of the lead, thereby forcing the bonding region towards the first end and bending or buckling the lead. Alternatively, the lead is bent downwardly by a tool and the tool may then be disengaged from the lead, shifted away from the proximal end of the lead and again advanced downwardly to secure the lead to the chip contact.