Abstract:
Methods and systems for generating inspection results for a specimen with an adaptive nuisance filter are provided. One method includes selecting a portion of events detected during inspection of a specimen having values for at least one feature of the events that are closer to at least one value of at least one parameter of the nuisance filter than the values for at least one feature of another portion of the events. The method also includes acquiring output of an output acquisition subsystem for the sample of events, classifying the events in the sample based on the acquired output, and determining if one or more parameters of the nuisance filter should be modified based on results of the classifying. The nuisance filter or the modified nuisance filter can then be applied to results of the inspection of the specimen to generate final inspection results for the specimen.
Abstract:
Methods and systems for generating defect samples are provided. One method includes identifying a set of defects detected on a wafer having the most diversity in values of at least one defect attribute and generating different tiles for different defects in the set. The tiles define a portion of all values for the at least one attribute of all defects detected on the wafer that are closer to the values for the at least one attribute of their corresponding defects than the values for the at least one attribute of other defects. In addition, the method includes separating the defects on the wafer into sample bins corresponding to the different tiles based on their values of the at least one attribute, randomly selecting defect(s) from each of two or more of the sample bins, and creating a defect sample for the wafer that includes the randomly selected defects.
Abstract:
Methods and systems for setting up a classifier for defects detected on a wafer are provided. One method includes generating a template for a defect classifier for defects detected on a wafer and applying the template to a training data set. The training data set includes information for defects detected on the wafer or another wafer. The method also includes determining one or more parameters for the defect classifier based on results of the applying step.
Abstract:
Defect location accuracy can be increased using shape based grouping with pattern-based defect centering. Design based grouping of defects on a wafer can be performed. A spatial distribution of the defects around at least one structure on the wafer, such as a predicted hot spot, can be determined. At least one design based defect property for a location around the structure can be determined. The defects within an x-direction threshold and a y-direction threshold of the structure may be prioritized.
Abstract:
Wafer inspection with stable nuisance rates and defect of interest capture rates are disclosed. This technique can be used for discovery of newly appearing defects that occur during the manufacturing process. Based on a first wafer, defects of interest are identified based on the classified filtered inspection results. For each remaining wafer, the defect classifier is updated and defects of interest in the next wafer are identified based on the classified filtered inspection results.
Abstract:
Methods and systems for training an inspection-related algorithm are provided. One system includes one or more computer subsystems configured for performing an initial training of an inspection-related algorithm with a labeled set of defects thereby generating an initial version of the inspection-related algorithm and applying the initial version of the inspection-related algorithm to an unlabeled set of defects. The computer subsystem(s) are also configured for altering the labeled set of defects based on results of the applying. The computer subsystem(s) may then iteratively re-train the inspection-related algorithm and alter the labeled set of defects until one or more differences between results produced by a most recent version and a previous version of the algorithm meet one or more criteria. When the one or more differences meet the one or more criteria, the most recent version of the inspection-related algorithm is outputted as the trained algorithm.
Abstract:
A fabricated device having consistent modulation between target and reference components is provided. The fabricated device includes a target component having a first modulation. The fabricated device further includes at least two reference components for the target component including a first reference component and a second reference component, where the first reference component and the second reference component each have the first modulation. Further, a system, method, and computer program product are provided for detecting defects in a fabricated target component using consistent modulation for the target and reference components.
Abstract:
A system, method, and computer program product are provided for correcting a difference image generated from a comparison of target and reference dies. In use, an intra-die inspection of a target die image is performed to generate, for each pattern of interest, a first representative image. An intra-die inspection of a reference die image is performed to generate, for each of the patterns of interest, a second representative image. Further, the target die image and the reference die image are compared to generate at least one difference image, and the at least one difference image is corrected using each of the generated first representative images and each of the generated second representative images. Detection is then performed using the corrected difference image.
Abstract:
Methods and systems for classifying defects detected on a specimen with an adaptive automatic defect classifier are provided. One method includes creating a defect classifier based on classifications received from a user for different groups of defects in first lot results and a training set of defects that includes all the defects in the first lot results. The first and additional lot results are combined to create cumulative lot results. Defects in the cumulative lot results are classified with the created defect classifier. If any of the defects are classified with a confidence below a threshold, the defect classifier is modified based on a modified training set that includes the low confidence classified defects and classifications for these defects received from a user. The modified defect classifier is then used to classify defects in additional cumulative lot results.
Abstract:
Methods and systems for generating inspection results for a specimen with an adaptive nuisance filter are provided. One method includes selecting a portion of events detected during inspection of a specimen having values for at least one feature of the events that are closer to at least one value of at least one parameter of the nuisance filter than the values for at least one feature of another portion of the events. The method also includes acquiring output of an output acquisition subsystem for the sample of events, classifying the events in the sample based on the acquired output, and determining if one or more parameters of the nuisance filter should be modified based on results of the classifying. The nuisance filter or the modified nuisance filter can then be applied to results of the inspection of the specimen to generate final inspection results for the specimen.