Abstract:
This invention relates generally to a novel method of preparing self-supporting bodies and to the novel products made thereby. In its more specific aspects, this invention relates to a method of producing self-supporting bodies comprising one or more boron-containing compounds, e.g., a boride or a boride and a carbide, by reacting, in one embodiment, a powdered parent metal, in molten form, with a bed or mass comprising a boron carbide material and, optionally, one or more inert fillers, to form the body. In another embodiment, both of a powdered parent metal and a body or pool of molten parent metal are induced to react with a bed or mass comprising a boron carbide material, and, optionally, one or more inert fillers.
Abstract:
This invention relates generally to a novel method of manufacturing a composite body. More particularly, the present invention relates to a method for modifying the resultant properties of a composite body, by, for example, minimizing the amount of porosity present in the composite body. Additives such as TaG, ZrC, ZrB₂, VC, NbC, WC, W₂B₅ and/or MoO₂B₅ can be combined with a boron carbide material (2) which is thereafter reactively infiltrated by a parent metal (3). The composite body comprises one or more boron-containing compounds (e.g., a boride or a boride and a carbide) which is made by the reactive infiltration of molten parent metal (3) into the boron carbide mass (2). Particular emphasis is placed upon modifying the properties of a ZrB₂-ZrC-Zr composite body. However, the methods disclosed in the application are believed to be generic to a number of parent metals and preform materials.
Abstract:
Self-supporting bodies are produced by reactive infiltration of a parent metal (10) into boron carbide (12) typically resulting in a composite comprising a boron-containing compound and metal. The mass to be infiltrated may contain one or more inert fillers admixed with the boron carbide (12), or at least one carbon donor material, to produce a composite by reactive infiltration, which composite comprises a matrix of metal and boron-containing compound embedding the filler. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal and/or porosity. The mass to be infiltrated can be contained within a refractory vessel (16) having a venting means included therein.
Abstract:
This invention relates generally to a novel method of preparing self-supporting bodies, and novel products made thereby. In its more specific aspects, this invention relates to a method for producing self-supporting bodies comprising one or more boron-containing compounds, e.g., a boride or a boride and a carbide, by reactive infiltration of molten parent metal (10) into a preform (20) comprising boron carbide or a boron donor material combined with a carbon donor material and, optionally, one or more inert fillers, to form the body. Specifically, a boron carbide material or combination of a boron donor material and a carbon donor material, and in either case, optionally, one or more inert fillers, are sedimentation cast, slip cast or pressed onto or into a body and into a particular desired shape.
Abstract:
This invention relates generally to a novel method of manufacturing a composite body and to novel products made thereby. More particularly, the invention relates to a method of producing a self-supporting body comprising one or more boron-containing compounds, e.g., a boride or a boride and carbide, by reactive infiltration of molten parent metal into a bed or mass containing boron carbide, and, optionally, one or more inert fillers and permitting residual or excess parent metal, to remain bonded to the formed self-supporting body. Excess metal is used to form a bond between the reactively infiltrated body and another body (e.g., a metal or a ceramic body).
Abstract:
Self-supporting bodies are produced by reactive infiltration of a parent metal (10) into a boron carbide material (12) which may contain one or both of a boron donor material and a carbon donor material. The reactive infiltration typically results in a composite comprising a boron-containing compound, a carbon-containing compound and residual metal, if desired. The mass to be infiltrated may contain one or more inert fillers admixed with the boron carbide material (12), boron-containing compound and/or carbon-containing compound. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal, ratios of one ceramic to another and porosity.
Abstract:
A net shaped ceramic-reinforced aluminum matrix composite is formed by forming a permeable mass of ceramic material (10) with a defined surface boundary having a barrier, and contacting a molten aluminum-magnesium alloy (20) with the permeable mass of ceramic material (10) in the presence of a gas comprising from about 10 to 100 % nitrogen, by volume, balance nonoxidizing gas, e.g. hydrogen or argon. Under these conditions, the molten alloy (20) spontaneously infiltrates the ceramic mass under normal atmospheric pressures until it reaches the barrier. A solid body of the alloy (20) can be placed adjacent to a permeable bedding of ceramic material (10) having a barrier, and brought to the molten state, preferably to at least about 700°C, in order to form the net shape aluminum matrix composite by infiltration. In addition to magnesium, auxiliary alloying elements may be employed with aluminum. The resulting composite products may contain a discontinuous aluminum nitride phase in the aluminum matrix.