Abstract:
A complex oxidation reaction product of two or more metals in an oxidized state is formed by positioning a suitable precursor metal (1) adjacent to a permeable mass (2) of a metal-containing compound in an oxidizing atmosphere and heating the assembly to form a body of molten precursor metal. The molten metal infiltrates the permeable mass (2) and reacts therewith and with the oxidizing atmosphere to form a complex oxidation reaction product. Methods for determining the shape of the resulting article are described. The disclosed methods can be used to form superconducting perovskites.
Abstract:
The present invention relates to a novel method of manufacturing a composite body, such as a ZrB₂-ZrC-Zr composite body, by utilizing a post-treatment technique. Moreover, the invention relates to novel products made according to the process. The novel process modifies at least a portion (10) of a composite body by exposing said body to a source of second metal.
Abstract:
A heat storage medium comprising a body of parent metal and an intrinsically cohesive ceramic layer formed integrally with the metal body and encapsulating said metal body is produced by the directed oxidation of a body of parent metal outwardly from the surface of said body to form integrally with the body of parent metal a layer of oxidation reaction product which encapsulates unreacted parent metal and forms a cavity resulting from the depletion of parent metal.
Abstract:
A complex oxidation reaction product of two or more metals in an oxidized state is formed by positioning a suitable precursor metal (1) adjacent to a permeable mass (2) of a metal-containing compound in an oxidizing atmosphere and heating the assembly to form a body of molten precursor metal. The molten metal infiltrates the permeable mass (2) and reacts therewith and with the oxidizing atmosphere to form a complex oxidation reaction product. Methods for determining the shape of the resulting article are described. The disclosed methods can be used to form superconducting perovskites.
Abstract:
A heat storage medium comprising a body of parent metal and an intrinsically cohesive ceramic layer formed integrally with the metal body and encapsulating said metal body is produced by the directed oxidation of a body of parent metal outwardly from the surface of said body to form integrally with the body of parent metal a layer of oxidation reaction product which encapsulates unreacted parent metal and forms a cavity resulting from the depletion of parent metal.