Abstract:
A unilateral backlight and a unilateral multiview display employ an array of unilateral diffractive elements configured to provide directional light beams having a unilateral direction. A unilateral diffractive element of the unilateral diffractive element array comprises a slanted diffraction grating configured to provide a directional light beam by diffractive scattering of light guided in a light guide. The unilateral multiview display further includes light valves configured to modulate a plurality of directional light beams as multiview image having the unilateral direction.
Abstract:
A multiview backlight and mode-switchable backlight employ a planar backlight to emit scattered light and light-blocking layer having a plurality of apertures to provide a plurality of directional light beams from the scattered light. The mode-switchable backlight further includes another planar backlight configured to provide diffuse light in a two-dimensional (2D) operational mode, the plurality of directional light beams being provided in a three-dimensional (3D) mode. A 2D/3D mode-switchable display includes the mode-switchable backlight and a light valve array. A method of backlight operation includes directing scattered light from a planar backlight toward a light-blocking layer having a plurality of apertures and providing a plurality of directional light beams using an aperture of the aperture plurality.
Abstract:
A mode-switchable backlight and mode-switchable privacy display provide narrow-angle emitted light during a first mode and broad-angle emitted light in a second mode, the broad-angle emitted light being a combination of the narrow-angle emitted light and bidirectional emitted light. The mode-switchable backlight includes a first directional backlight and a second directional backlight. The first directional backlight is configured to provide the narrow-angle emitted light during both of the first mode and second mode, while the second directional backlight is configured to provide the bidirectional emitted light exclusively during the second mode. The mode-switchable privacy display includes an array of light valves configured to modulate the narrow-angle emitted light as a private displayed image during the first or privacy mode and to modulate broad-angle emitted light as a public displayed image during the second or public mode.
Abstract:
A static multiview display and method of static multiview display operation provide a static multiview image using diffractive gratings to diffractively scatter light from guided light beams having different radial directions. The static multiview display includes a light guide configured to guide plurality of guided light beams and a light source configured to provide the guided light beam plurality having the different radial directions. The static multiview display further includes a plurality of diffraction gratings configured to provide from a portion of the guided light beams directional light beams having intensities and principal angular directions corresponding to view pixels of the static multiview image.
Abstract:
A privacy display provides a private image exclusively visible within a viewing cone of a viewbox. The privacy display includes a light guide to guide light, a diffraction grating configured to diffractively couple out a portion of the guided light as diffractively coupled-out light and to direct the diffractively coupled-out light into the viewbox, and a light valve array configured to modulate the diffractively coupled-out light to provide the private image. An extent of the viewbox is determined by a collimation factor of the guided light. A dual-mode privacy display system further includes a broad-angle backlight configured to provide broad-angle light to separately provide a public image visible both inside and outside the viewing cone. The private image may be provided in a privacy mode and the public image may be provided in a public mode of the dual-mode privacy display system.
Abstract:
Multibeam diffraction grating-based backlighting includes a light guide and a multibeam diffraction grating at a surface of the light guide. The light guide is to guide light from a light source. The multibeam diffraction grating is to couple out a portion of the guided light using diffractive coupling and to direct the coupled out portion away from the light guide as a plurality of light beams with different principal angular directions.
Abstract:
A multiview backlight includes a light guide to guide light as guided light having a first direction and a different second direction within the light guide. The multiview backlight includes a multibeam element array having a plurality of spaced apart multibeam elements of the multibeam element array that each include a plurality of scattering sub-elements configured to scatter out portions of the guided light as directional light beams corresponding to different view directions of a multiview display. A first scattering sub-element of the plurality of scattering sub-elements is configured to selectively scatter out a portion of the guided light having the first direction and a second scattering sub-element of the plurality of scattering sub-elements is configured to selectively scatter out at least a portion of the guided light having the second direction.
Abstract:
A multibeam backlight and multiview display employ a filling fraction of a diffraction grating to control diffractive scattering efficiency. The multibeam backlight includes a light guide configured to guide light and a plurality of multibeam elements, a multibeam element of the multibeam element plurality including a diffraction grating. The multibeam element is configured to diffractively scatter a portion of the guided light out of the light guide as directional light beams having different directions corresponding to different view directions of a multiview display. A filling fraction of diffractive features within the diffraction grating is configured to control a diffractive scattering efficiency of the multibeam element. The multiview display further includes an array of light valves configured to modulate the directional light beams to provide a multiview image. The filling fraction may be a ratio of diffractive features to filling features within the diffraction grating.
Abstract:
A multiview backlight having applications in a multiview display employs an array of multibeam elements located a predetermined distance below a top surface of a light guide in the multiview backlight. The multibeam elements may be configured to scatter out through the top surface a portion of guided light from the light guide as directional light beams having different principal angular directions corresponding to different views of the multiview display. For example, the multibeam elements each may comprise one or more of a diffraction grating, a micro-reflective element, and a micro-refractive element. Moreover, the multiview display may include an array of light valves configured to modulate the directional light beams as a multiview image to be displayed by the multiview display, and the predetermined distance may be greater than one quarter of a size of a light valve of the set of light valves.
Abstract:
A multiview display includes a multiview backlight configured to emit directional light beams configured to converge at points within a convergence plane, and an array of light valves configured to modulate the directional light beams at the convergence plane. A distance between the multiview backlight and the light valve array is configured to be adjustable to shift a corresponding location of the convergence plane relative to the multiview display.