Abstract:
A horizontal parallax multiview display employs a plurality of slanted multibeam columns to scatter out of a light guide a plurality of directional light beams having principal angular directions corresponding to different view directions of the horizontal parallax multiview display. The plurality of directional light beams is modulated using an array of light valves to provide a multiview image having horizontal parallax. Further, the horizontal parallax multiview display employs a light control film having a slanted light control axis aligned with slanted multibeam columns of the slanted multibeam column plurality. The light control film is configured to control a view angle of the multiview image in a direction orthogonal to the horizontal parallax. The slanted multibeam columns may provide the multiview displays with a balanced resolution.
Abstract:
A mode-selectable backlight and privacy display employ directional scattering features to provide emitted light. The mode-selectable backlight includes a light guide, a first directional scattering feature to provide broad-angle emitted light from guided light having a first propagation direction within the light guide during a public mode, and a second directional scattering feature to provide second light from guided light having a second propagation direction within the light guide during a privacy mode. The directional emitted light the provided during the privacy mode is directed into a viewbox. The mode-selectable privacy display further includes light sources configured to provide the guided light having the first and second propagation directions along with an array of light valves configured to modulate the broad-angle emitted light as a public image and the directional emitted light as a private image visible within the viewbox.
Abstract:
A multiview backlight and a multiview display employ a microstructured multibeam element to emit a plurality of directional light beams having principal angular directions corresponding to view directions of the multiview display. The multiview backlight includes a light guide and the microstructured multibeam element adjacent and external to a surface of the light guide. The microstructured multibeam element has an input aperture configured to receive a portion of guided light from the light guide and an output aperture configured to emit the plurality of directional light beams. The microstructured multibeam element comprises a microstructure having an interior surface configured to reflect the received guided light portion to provide the plurality of directional light beams at the output aperture. The multiview display includes the multiview backlight and an array of multiview pixels configured to provide different views of the multiview display.
Abstract:
A multiview backlight and mode-switchable backlight employ a planar backlight to emit scattered light and light-blocking layer having a plurality of apertures to provide a plurality of directional light beams from the scattered light. The mode-switchable backlight further includes another planar backlight configured to provide diffuse light in a two-dimensional (2D) operational mode, the plurality of directional light beams being provided in a three-dimensional (3D) mode. A 2D/3D mode-switchable display includes the mode-switchable backlight and a light valve array. A method of backlight operation includes directing scattered light from a planar backlight toward a light-blocking layer having a plurality of apertures and providing a plurality of directional light beams using an aperture of the aperture plurality.
Abstract:
A multiview backlight includes a light guide to guide light as guided light having a first direction and a different second direction within the light guide. The multiview backlight includes a multibeam element array having a plurality of spaced apart multibeam elements of the multibeam element array that each include a plurality of scattering sub-elements configured to scatter out portions of the guided light as directional light beams corresponding to different view directions of a multiview display. A first scattering sub-element of the plurality of scattering sub-elements is configured to selectively scatter out a portion of the guided light having the first direction and a second scattering sub-element of the plurality of scattering sub-elements is configured to selectively scatter out at least a portion of the guided light having the second direction.
Abstract:
A multiview backlight having applications in a multiview display employs an array of multibeam elements located a predetermined distance below a top surface of a light guide in the multiview backlight. The multibeam elements may be configured to scatter out through the top surface a portion of guided light from the light guide as directional light beams having different principal angular directions corresponding to different views of the multiview display. For example, the multibeam elements each may comprise one or more of a diffraction grating, a micro-reflective element, and a micro-refractive element. Moreover, the multiview display may include an array of light valves configured to modulate the directional light beams as a multiview image to be displayed by the multiview display, and the predetermined distance may be greater than one quarter of a size of a light valve of the set of light valves.
Abstract:
Multiview backlighting having a color-tailored emission pattern provides directional light beams corresponding to a plurality of different views of a multiview image. A multiview backlight includes a light guide configured to guide light as guided light and a color-tailored multibeam element. The color-tailored multibeam element is configured to provide emitted light having the color-tailored emission pattern from the guided light. The emitted light includes a plurality of directional light beams having different principal angular directions corresponding to respective different view directions of a multiview display. The color-tailored emission pattern corresponds to an arrangement of color sub-pixels of a view pixel in the multiview display.
Abstract:
Multiview backlighting employs a fluorescent multibeam element having a color-tailored emission pattern to provide directional light beams corresponding to a plurality of different views of a multiview image. A multiview backlight includes a light guide configured to guide light as guided light and a fluorescent multibeam element. The fluorescent multibeam element includes a fluorescent material and is configured to provide emitted light having a color-tailor emission pattern from the guided light. The emitted light including a plurality of directional light beams having different principal angular directions corresponding to respective different view directions of a multiview display and the color-tailored emission pattern corresponds to an arrangement of color sub-pixels of a view pixel in the multiview display.
Abstract:
A polarized backlight employs a light source configured to provide polarized light and a light guide to guide the polarized light. A polarization-preserving scattering feature optically coupled to the light guide is configured to scatter a portion of the guided polarized light out of the light guide as emitted polarized light. A polarization of the emitted polarized light is determined by a polarization of the guided light.
Abstract:
A multiview backlight and a multiview display employ multibeam elements configured to provide a plurality of light beams having different principal angular directions corresponding to different view directions of the multiview display. The display includes multiview pixels that include sub-pixels. A size of the multibeam element is comparable to a size of a sub-pixel in a multiview pixel of the multiview display.