Abstract:
A mode-selectable backlight and privacy display employ directional scattering features to provide emitted light. The mode-selectable backlight includes a light guide, a first directional scattering feature to provide broad-angle emitted light from guided light having a first propagation direction within the light guide during a public mode, and a second directional scattering feature to provide second light from guided light having a second propagation direction within the light guide during a privacy mode. The directional emitted light the provided during the privacy mode is directed into a viewbox. The mode-selectable privacy display further includes light sources configured to provide the guided light having the first and second propagation directions along with an array of light valves configured to modulate the broad-angle emitted light as a public image and the directional emitted light as a private image visible within the viewbox.
Abstract:
A multiview backlight and a multiview display employ a microstructured multibeam element to emit a plurality of directional light beams having principal angular directions corresponding to view directions of the multiview display. The multiview backlight includes a light guide and the microstructured multibeam element adjacent and external to a surface of the light guide. The microstructured multibeam element has an input aperture configured to receive a portion of guided light from the light guide and an output aperture configured to emit the plurality of directional light beams. The microstructured multibeam element comprises a microstructure having an interior surface configured to reflect the received guided light portion to provide the plurality of directional light beams at the output aperture. The multiview display includes the multiview backlight and an array of multiview pixels configured to provide different views of the multiview display.
Abstract:
A static multiview display and method of static multiview display operation provide a static multiview image using diffractive gratings to diffractively scatter light from guided light beams having different radial directions. The static multiview display includes a light guide configured to guide plurality of guided light beams and a light source configured to provide the guided light beam plurality having the different radial directions. The static multiview display further includes a plurality of diffraction gratings configured to provide from a portion of the guided light beams directional light beams having intensities and principal angular directions corresponding to view pixels of the static multiview image.
Abstract:
A grating-coupled light guide concentrates light and diffractively redirects the concentrated light at a non-zero propagation angle as guided light having a predetermined spread angle. The grating-coupled light guide includes a light guide, an optical concentrator, and a grating coupler. The optical concentrator is configured to concentrate light from a light source as concentrated light and the grating coupler is configured to diffractively redirect the concentrated light into the light guide as the guided light. Characteristics of the optical concentrator and grating coupler are configured in combination to determine the non-zero propagation angle and predetermined spread angle. A grating-coupled display system further includes an array of light valves configured to modulate emitted light as a displayed image.
Abstract:
A multilayer static multiview display and method of multilayer multiview display operation provide a plurality of multiview images using diffractive scattering of light from guided light beams having different radial directions. The static multiview display includes a first multiview display layer configured to emit directional light beams representing a first multiview image by diffractive scattering light from a radial pattern of guided light beams within the first multiview display layer. The static multiview display further includes a second multiview display layer configured to emit directional light beams representing a second static multiview image by diffractive scattering light from a radial pattern of guided light beams within the second multiview display layer. The provided plurality of multiview images may include a composite color multiview image, a static multiview image, or an animated or quasi-static multiview image.
Abstract:
A polarized backlight employs a light source configured to provide polarized light and a light guide to guide the polarized light. A polarization-preserving scattering feature optically coupled to the light guide is configured to scatter a portion of the guided polarized light out of the light guide as emitted polarized light. A polarization of the emitted polarized light is determined by a polarization of the guided light.
Abstract:
A multiview backlight and a multiview display employ multibeam elements configured to provide a plurality of light beams having different principal angular directions corresponding to different view directions of the multiview display. The display includes multiview pixels that include sub-pixels. A size of the multibeam element is comparable to a size of a sub-pixel in a multiview pixel of the multiview display.
Abstract:
A multiview backlight and a multiview display employ active emitters configured to provide a plurality of light beams having different principal angular directions corresponding to different view directions of the multiview display. A size of the active emitter is comparable to a size of a view pixel in the multiview display. A distance between active emitters is commensurate with a distance between adjacent multiview pixels of the multiview display. A multiview display further includes an array of light valves configured to modulate the directional light beams to display a multiview image.
Abstract:
A mode-selectable backlight and display employ a plurality of directional scattering features to provide emitted light. The mode-selectable backlight includes a light guide, a first directional scattering feature to provide first emitted light from guided light having a first propagation direction within the light guide in a first operational mode, and a second directional scattering feature to provide second light from guided light having a second propagation direction within the light guide in a second operational mode. The second emitted light comprises a plurality of directional light beams having different principal angular directions from one another and the first propagation direction differing from the second propagation direction. The mode-selectable display further includes a plurality of light sources to provide the guided light and an array of light valves configured to modulate the emitted light as a displayed image.
Abstract:
Dual-direction collimation and a dual-direction optical collimator provide dual-direction collimated light at a non-zero propagation angle. The dual-direction collimator includes a vertical collimator configured to collimate light in a vertical direction and a horizontal collimator configured to collimate the vertically collimated light in a horizontal direction. The horizontal collimator is located at an output of the vertical collimator. A three-dimensional (3D) display includes the dual-direction collimator, a plate light guide and an array of multibeam diffraction gratings at a surface of the plate light guide to couple out the dual-direction collimated light guided in the plate light guide as a plurality of light beams corresponding to different 3D view of the 3D electronic display.