Abstract:
A method for nucleic acid sequencing includes (a) disposing a plurality of template polynucleotide strands in a plurality of defined spaces disposed on a sensor array, at least some of the template polynucleotide strands comprising a test or control sequence; (b) exposing a plurality of the template polynucleotide strands in the defined spaces to a series of flows of nucleotide species flowed according to a predetermined ordering; and (c) determining sequence information for a plurality of the template polynucleotide strands in the defined spaces based on the flows of nucleotide species to generate a plurality of sequencing reads corresponding to the template polynucleotide strands, wherein the test or control sequence comprises a sequence determined by identifying, using a variant caller, loci with systematic errors present in a plurality of sequencing runs included in a training set of sequencing runs.
Abstract:
Methods and systems for quantification of a target nucleic acid in a sample are provided. The method includes forming a plurality of discrete sample portions. Each of the plurality of discrete sample portions comprising a portion of the sample, and a reaction mixture. The method further includes amplifying the plurality of discrete sample portions to form a plurality of discrete processed sample portions. At least one discrete processed sample portion containing nucleic acid amplification reaction products. Fluorescence signals are detected from the at least one of the plurality of discrete processed sample portions to determine a presence of the at least one target nucleic acid. The method also includes determining the respective volumes of the plurality of the plurality of discrete processed sample portions, and estimating the number of copies-per-unit-volume of the at least one target nucleic acid in the sample. Estimating the number of copies-per-unit-volume is based on the number of discrete processed sample portions determined to contain the at least one target nucleic acid therein.
Abstract:
A method for designing test or control sequences may include identifying, using a variant caller, loci with systematic errors present in a plurality of sequencing runs included in a training set of sequencing runs obtained using sequencing-by-synthesis; and selecting a representative set of loci, including selecting from the identified loci an approximately equal number of loci involving errors in A, T, C, and G homopolymers and selecting from the identified loci an approximately equal number of loci involving homopolymers having a length of two, three, and four.
Abstract:
A method of estimating a parameter related to sequencing of a sample nucleic acid template includes: receiving signal data relating to nucleotide incorporation events resulting from a series of flows of nucleotides onto an array of wells including (i) a first well containing the sample nucleic acid template and (ii) a plurality of other sample-containing wells; determining sequence information for the sample nucleic acid template using signal data from the first well; and constructing a phase-state model for a set of nucleotide flows that contributed at least in part to the sequence information, wherein the model includes a signal correction parameter that is determined using signal data from the plurality of other sample-containing wells.
Abstract:
A method for nucleic acid sequencing includes receiving a plurality of observed or measured signals indicative of a parameter observed or measured for a plurality of defined spaces; determining, for at least some of the defined spaces, whether the defined space comprises one or more sample nucleic acids; processing, for at least some of the defined spaces, the observed or measured signal to improve a quality of the observed or measured signal; generating, for at least some of the defined spaces, a set of candidate sequences of bases for the defined space using one or more metrics adapted to associate a score or penalty to the candidate sequences of bases; and selecting the candidate sequence leading to a highest score or a lowest penalty as corresponding to the correct sequence for the one or more sample nucleic acids in the defined space.
Abstract:
Methods and systems for the analysis of genotyping data are presented. According to various embodiments of methods and systems, an angle configuration search may be performed. In various embodiments, an exhaustive search over the entirety of an angle configuration space may be performed to provide a fit to a plurality of angles determined for a plurality of points in a data set generated from a plurality of biological samples. For various embodiments, the angle configuration space may be defined to ensure that a global fit may be determined. According to various methods and systems, a data base of possible angle configurations may be searched, in which each angle configuration may include three angles. According to various methods and systems, a data base of possible angle configurations may include for each angle configuration a probability that the angle configuration may occur.
Abstract:
A computer-implemented method for designing a digital PCR (dPCR) experiment is provided. The method includes receiving, from a user, a selection of optimization type. The optimization type may be maximizing the dynamic range, minimizing the number of substrates including reaction sites needed for the experiment, determining a dilution factor, or determining the lower limit of detection, for example. The method further includes receiving, from the user, a precision measure for an experiment, and a minimum concentration of a target in a reaction site for the experiment. The method also includes determining a set of dPCR experiment design factors for the experiment based on the optimization type. The set of dPCR experiment design factors is then displayed to the user.
Abstract:
Methods and systems for the analysis of genotyping data are presented. According to various embodiments of methods and systems, an angle configuration search may be performed. In various embodiments, an exhaustive search over the entirety of an angle configuration space may be performed to provide a fit to a plurality of angles determined for a plurality of points in a data set generated from a plurality of biological samples. For various embodiments, the angle configuration space may be defined to ensure that a global fit may be determined. According to various methods and systems, a data base of possible angle configurations may be searched, in which each angle configuration may include three angles. According to various methods and systems, a data base of possible angle configurations may include for each angle configuration a probability that the angle configuration may occur.
Abstract:
Methods and systems for quantification of a target nucleic acid in a sample are provided. The method includes forming a plurality of discrete sample portions. Each of the plurality of discrete sample portions comprising a portion of the sample, and a reaction mixture. The method further includes amplifying the plurality of discrete sample portions to form a plurality of discrete processed sample portions. At least one discrete processed sample portion containing nucleic acid amplification reaction products. Fluorescence signals are detected from the at least one of the plurality of discrete processed sample portions to determine a presence of the at least one target nucleic acid. The method also includes determining the respective volumes of the plurality of the plurality of discrete processed sample portions, and estimating the number of copies-per-unit-volume of the at least one target nucleic acid in the sample. Estimating the number of copies-per-unit-volume is based on the number of discrete processed sample portions determined to contain the at least one target nucleic acid therein.
Abstract:
A computer-implemented method for designing a digital PCR (dPCR) experiment is provided. The method includes receiving, from a user, a selection of optimization type. The optimization type may be maximizing the dynamic range, minimizing the number of substrates including reaction sites needed for the experiment, determining a dilution factor, or determining the lower limit of detection, for example. The method further includes receiving, from the user, a precision measure for an experiment, and a minimum concentration of a target in a reaction site for the experiment. The method also includes determining a set of dPCR experiment design factors for the experiment based on the optimization type. The set of dPCR experiment design factors is then displayed to the user.