Abstract:
Transmission methods for multicast messages and for signaling message responses thereto in communication systems supporting a multicast mode provide that a number of retransmissions of a multicast message may be changed based on a number of receivers (105) of the message. Signaling messages to the multicast message may be transmitted in response to a fixed number of multicast message transmissions, and receivers (105) that have not received the multicast message after the fixed number of transmissions may request further retransmissions up to an additional given number of times. Further, signaling messages may be transmitted at different times or staggered based on a radio condition of the receivers (105). For example, a first multicast message may be transmitted, and responses from groups of receivers (105) may be listened to for a given period, after which one of a next multicast message and a portion of the first multicast message may be transmitted to the groups.
Abstract:
A method for scheduling transmissions to a plurality of users in a communication network determines a satisfaction metric and a dissatisfaction metric for each user in a given timeslot that is to be used for a next scheduled transmission to one of the users. Each user is assigned a weight based on a value of at least one of the user's satisfaction metric, the user's dissatisfaction metric and a rate requested by the user. The use having the highest weight is selected to be served the next scheduled transmission in the given timeslot.
Abstract:
A scheduler and a method for scheduling transmissions to a plurality of users (105) in a communication network assigns a higher target minimum throughput for receiving a next transmission to a user based on a quality of service (QoS) class of the user. A token count that tracks the user's achieved performance relative to a target minimum throughput Is determined for each user in given timeslot, and a weight is determined for each user based on one or more of the token count and a current rate requested by the user. A user having the highest weight as determined by a weight function is scheduled to be served the next transmission. User priority for scheduling may be downgraded if an average data rate requested by the user is less than the target minimum throughput.
Abstract:
A method for scheduling transmissions to a plurality of users in a communication network determines a satisfaction metric and a dissatisfaction metric for each user in a given timeslot that is to be used for a next scheduled transmission to one of the users. Each user is assigned a weight based on a value of at least one of the user's satisfaction metric, the user's dissatisfaction metric and a rate requested by the user. The use having the highest weight is selected to be served the next scheduled transmission in the given timeslot.
Abstract:
A method for scheduling transmissions to a plurality of users in a communication network determines a satisfaction metric and a dissatisfaction metric for each user in a given timeslot that is to be used for a next scheduled transmission to one of the users. Each user is assigned a weight based on a value of at least one of the user's satisfaction metric, the user's dissatisfaction metric and a rate requested by the user. The use having the highest weight is selected to be served the next scheduled transmission in the given timeslot.
Abstract:
The error detection method includes decoding a portion of each control channel that is simultaneously received by a user equipment (UE) in a wireless communication system. The UE is provided with techniques to determine if one or more of the control channels were successfully received during the decoding step. If more than one control channel was successfully received, the method selects only one of the successfully received control channels based on calculated path metric differences (PMD) that serve as a "tie-breaking" mechanism to select the correct control channel for a particular UE.
Abstract:
In an embodiment, a composite signaling message part is formed to include at least two segments (500), each segment (500) including data identifying a different user equipment (UE). In another embodiment, a different portion of a composite signaling message part is transmitted over at least one same time slot in each of the shared control channels; the part including at least two segments (510, 530) and each segment (510, 530) including data identifying a different user equipment (UE). In these embodiments, the part further includes a cyclic redundancy code (550), (CRC) generated by jointly encoding the at least two segments (510, 530). In a further aspect of the method, more than one shared control channel jointly carrying a signaling message are power controlled such that each shared control channel carrying more data associated with one of the UEs is power controlled in accordance with that UE. In a still further embodiment, the channelized code information for a dedicated control channel is divided between first and second parts of the shared control signals.
Abstract:
A method for processing control information in a wireless communications system is described in which portions of the control information are separately encoded and decoded such that transmission format information for a corresponding data transmission can be determined with a reduced set of decoded control information. The control information is convolutionally coded using either a single set of tail bits or by judiciously dispersing the tail bits among different portions of the encoded signaling information.