Abstract:
A method of data communication. The method includes initially receiving one or more channel quality information signals from each wireless unit. The channel quality information may be received in response to the transmission of one or more pilot signals. Once the channel quality information signal(s) from each wireless unit are received, the method then includes selecting one or more transmit powers and one or more transmission rates for each wireless unit. Thereafter, one or more blocks of orthogonal continuous waveforms may be transmitted over a channel to each wireless unit using the selected transmit power and selected transmission rate.
Abstract:
The error detection method includes decoding a portion of each control channel that is simultaneously received by a user equipment (UE) in a wireless communication system. The UE is provided with techniques to determine if one or more of the control channels were successfully received during the decoding step. If more than one control channel was successfully received, the method selects only one of the successfully received control channels based on calculated path metric differences (PMD) that serve as a "tie-breaking" mechanism to select the correct control channel for a particular UE.
Abstract:
In an embodiment, a composite signaling message part is formed to include at least two segments (500), each segment (500) including data identifying a different user equipment (UE). In another embodiment, a different portion of a composite signaling message part is transmitted over at least one same time slot in each of the shared control channels; the part including at least two segments (510, 530) and each segment (510, 530) including data identifying a different user equipment (UE). In these embodiments, the part further includes a cyclic redundancy code (550), (CRC) generated by jointly encoding the at least two segments (510, 530) . In a further aspect of the method, more than one shared control channel jointly carrying a signaling message are power controlled such that each shared control channel carrying more data associated with one of the UEs is power controlled in accordance with that UE. In a still further embodiment, the channelized code information for a dedicated control channel is divided between first and second parts of the shared control signals.
Abstract:
The error detection method includes decoding a portion of each control channel that is simultaneously received by a user equipment (UE) in a wireless communication system. The UE is provided with techniques to determine if one or more of the control channels were successfully received during the decoding step. If more than one control channel was successfully received, the method selects only one of the successfully received control channels based on calculated path metric differences (PMD) that serve as a "tie-breaking" mechanism to select the correct control channel for a particular UE.
Abstract:
In an embodiment, a composite signaling message part is formed to include at least two segments (500), each segment (500) including data identifying a different user equipment (UE). In another embodiment, a different portion of a composite signaling message part is transmitted over at least one same time slot in each of the shared control channels; the part including at least two segments (510, 530) and each segment (510, 530) including data identifying a different user equipment (UE). In these embodiments, the part further includes a cyclic redundancy code (550), (CRC) generated by jointly encoding the at least two segments (510, 530). In a further aspect of the method, more than one shared control channel jointly carrying a signaling message are power controlled such that each shared control channel carrying more data associated with one of the UEs is power controlled in accordance with that UE. In a still further embodiment, the channelized code information for a dedicated control channel is divided between first and second parts of the shared control signals.
Abstract:
The error detection method includes decoding a portion of each control channel that is simultaneously received by a user equipment (UE) in a wireless communication system. The UE is provided with techniques to determine if one or more of the control channels were successfully received during the decoding step. If more than one control channel was successfully received, the method selects only one of the successfully received control channels based on calculated path metric differences (PMD) that serve as a "tie-breaking" mechanism to select the correct control channel for a particular UE.
Abstract:
In an embodiment, a composite signaling message part is formed to include at least two segments (500), each segment (500) including data identifying a different user equipment (UE). In another embodiment, a different portion of a composite signaling message part is transmitted over at least one same time slot in each of the shared control channels; the part including at least two segments (510, 530) and each segment (510, 530) including data identifying a different user equipment (UE). In these embodiments, the part further includes a cyclic redundancy code (550), (CRC) generated by jointly encoding the at least two segments (510, 530). In a further aspect of the method, more than one shared control channel jointly carrying a signaling message are power controlled such that each shared control channel carrying more data associated with one of the UEs is power controlled in accordance with that UE. In a still further embodiment, the channelized code information for a dedicated control channel is divided between first and second parts of the shared control signals.