Abstract:
A composition for stripping tin, lead or solder, as well as any underlying copper-tin alloy, from copper surfaces, containing an alkane sulfonic acid, preferably methane sulfonic acid, an inorganic nitrate, preferably ferric nitrate, and an inhibitor component. The composition effects rapid stripping without any appreciable formation of sludge or precipitate or suspended particles, and without any substantial attack on the underlying copper surface.
Abstract:
501-069 MECHANICALLY PLATED COATINGS CONTAINING LUBRICANT PARTICLES In a mechanical plating process, lubricant particles can be coated on a metal substrate together with the particulate plating metal to enhance the mechanicallyapplied coating's lubricity. The lubricant can be particles of fluorocarbon polymers, fluorocarbonhydrocarbon blended polymers, powdered, elemental carbon, powdered fluorinated carbon, or mixtures thereof. The lubricant particles have a diameter less than the thickness of the coating (which is usually from 2.5 to 132.5 mils), so they will not be dislodged from the coating. The particles must not be too small or they may be washed away by plating liquids or may be applied too far from the coating surface to enhance lubricity. These dimensional relationships insure that the lubricant particles are entrapped within the coating.
Abstract:
In a mechanical plating process, lubricant particles can be coated on a metal substrate together with the particulate plating metal to enhance the mechanically-applied coating's lubricity. The lubricant can be particles of fluorocarbon polymers, fluorocarbon-hydrocarbon blended polymers, powdered, elemental carbon, powdered fluorinated carbon, or mixtures thereof. The lubricant particles have a diameter less than the thickness of the coating (which is usually from 2.5 to 132.5 mils), so they will not be dislodged from the coating. The particles must not be too small or they may be washed away by plating liquids or may be applied too far from the coating surface to enhance lubricity. These dimensional relationships insure that the lubricant particles are entrapped within the coating.
Abstract:
In a mechanical plating process, oxidation-prone metals, such as aluminum, titanium, magnesium, and mixtures thereof, can be applied to metal substrates without the corrosion problems encountered in the prior art. To avoid such problems, the substrate is plated with the oxidation-prone metal and relatively minor amounts of an immersion metal and, optionally, a protective metal. The immersion metal which can be salts or oxides of metals selected from the group consisting of tin, copper, nickel, cadmium, zinc, lead, and mixtures thereof coats the oxidation-prone metal in forming a mechanical plating coating and prevents formation of an oxide layer on the oxidation-prone metal. The protective metal which may be selected from the group consisting of zinc, cadmium, and mixtures thereof prevents oxidation of the plated metal substrate when exposed to the environment. An etching agent is used either prior to and/or during mechanical plating.