Abstract:
A multilayer polymer film has an optical stack including a plurality of alternating polymer layers with skin layers having mechanical, optical, or chemical properties differing from those of the layers in the optical stack.
Abstract:
A multiple layer reflective polarizer (12) is described. This element is placed between an optical cavity (24) and an LCD module (16) to form an optical display. The reflective polarizer reflects some light into the optical cavity (24) where it is randomized and may ultimately emerge with the correct polarization to be transmitted out of the display.
Abstract:
A method for making multilayer optical films is provided in which the degradation of the optical extinction of the thinnest optical layers is avoided by casting these layers close to the casting wheel.
Abstract:
An optical film is provided which exhibits increased gain at non-normal angles of incidence and which comprises a disperse phase of polymeric particles disposed within a continuous birefringent matrix. The film is oriented, typically by stretching, in one or more directions. The size and shape of the disperse phase particles, the volume fraction of the disperse phase, the film thickness, and the amount of orientation are chosen to attain a desired degree of diffuse reflection and total transmission of electromagnetic radiation of a desired wavelength in the resulting film.
Abstract:
An optical film is provided which comprises a disperse phase of polymeric particles disposed within a continuous birefringent matrix. The film is oriented, typically by stretching, in one or more directions. The size and shape of the disperse phase particles, the volume fraction of the disperse phase, the film thickness, and the amount of orientation are chosen to attain a desired degree of diffuse reflection and total transmission of electromagnetic radiation of a desired wavelength in the resulting film.
Abstract:
Birefringent optical films (10, 12, 14) have a Brewster angle (the angle at which reflectance of p-polarized light goes to zero) which is very large or is nonexistant. This allows for the construction of multilayer mirrors and polarizers whose reflectivity for p-polarized light decreases slowly with angle of incidence, are independent of angle of incidence, or increase with angle of incidence away from the normal. As a result, multilayer films (10) having high reflectivity (for both planes of polarization for any incident direction in the case of mirrors, and for the selected direction in the case of polarizers) over a wide bandwidth, can be achieved.
Abstract:
A multilayered polymer film includes a first set of optical layers and a second set of optical layers. The first set of optical layers is made from a polyester which is often birefringent. The polyesters of the first set of optical layers typically have a composition in which 70-100 mol % of the carboxylate subunits are first carboxylate subunits and 0-30 mol % are comonomer carboxylate subunits and 70 to 100 mol % of the glycol subunits are first glycol subunits and 0 to 30 mol % of the glycol subunits are comonomer glycol subunits, where at least 0.5 mol % of the combined carboxylate and glycol subunits are comonomer carboxylate or comonomer glycol subunits. The multilayered polymer film may be used to form, for example, a reflective polarizer or a mirror.