Abstract:
An optical film is provided which comprises a disperse phase of polymeric particles disposed within a continuous birefringent matrix in combination with light directing materials to enable control of light emitted from a lighting fixture or display. The film is oriented, typically by stretching, in one or more directions. The size and shape of the disperse phase particles, the volume fraction of the disperse phase, the film thickness, and the amount of orientation are chosen to attain a desired degree of diffuse reflection and total transmission of electromagnetic radiation of a desired wavelength in the resulting film, and the light directing materials are chosen to control the direction of polarized light reflected from or transmitted by the optical film.
Abstract:
A reflective polarizer and a dichroic polarizer are combined to provide an improved optical polarizer. The dichroic and reflective polarizers are typically in close proximity to each other, and are preferably bonded together to eliminate the air gap between the polarizers. The combination of the two polarizers provides a high reflectivity of one polarization and high transmission for the perpendicular polarization from the reflective polarizer side of the combined polarizer, and high absorption and transmission for light of orthogonal polarization from the dichroic polarizer side. The combination also reduces iridescence as seen in transmission and when viewed in reflection from the dichroic polarizer side. The increased extinction ratio and low reflectivity of the optical polarizer allows use of a lower extinction ratio dichroic polarizer in applications requiring a given extinction ratio and high transmission.
Abstract:
The present invention includes a multilayered polymer film (10) comprising a body of a plurality of alternating layers (12) of a crystalline naphthalene dicarboxylic acid polyester and another selected polymer (14) wherein the layers have a thickness of less than 0.5 micrometer and wherein the crystalline naphthalene dicarboxylic acid polyester layer has a higher index of refraction associated whith at least one in-plane axis adjoining layers of the selected polymer.
Abstract:
An optical film is provided which comprises a disperse phase of polymeric particles disposed within a continuous birefringent matrix. The film is oriented, typically by stretching, in one or more directions. The size and shape of the disperse phase particles, the volume fraction of the disperse phase, the film thickness, and the amount of orientation are chosen to attain a desired degree of diffuse reflection and total transmission of electromagnetic radiation of a desired wavelength in the resulting film.
Abstract:
An optical film is provided which comprises a disperse phase of polymeric particles disposed within a continuous birefringent matrix. The film is oriented, typically by stretching, in one or more directions. The size and shape of the disperse phase particles, the volume fraction of the disperse phase, the film thickness, and the amount of orientation are chosen to attain a desired degree of diffuse reflection and total transmission of electromagnetic radiation of a desired wavelength in the resulting film.
Abstract:
A nonpolarizing beamsplitter (10) is provided, comprising a multilayered stack (11) of alternating layers (A, B) of a first material and a second material. The first material layers (A) are uniaxially birefringent, and the second material layers (B) are optionally uniaxially birefringent or isotropic. The layers have index of refraction relationships such that for an incident beam having a useful bandwidth, a p-polarized component and an s-polarized component striking the beamsplitter at any angle of incidence theta within a desired range, the beamsplitter exhibits substantially the same average reflectivity for the p-polarized component of the incident beam as for the s-polarized component. The invention also includes a method of making a nonpolarizing beamsplitter.
Abstract:
Birefringent optical films (10, 12, 14) have a Brewster angle (the angle at which reflectance of p-polarized light goes to zero) which is very large or is nonexistant. This allows for the construction of multilayer mirrors and polarizers whose reflectivity for p-polarized light decreases slowly with angle of incidence, are independent of angle of incidence, or increase with angle of incidence away from the normal. As a result, multilayer films (10) having high reflectivity (for both planes of polarization for any incident direction in the case of mirrors, and for the selected direction in the case of polarizers) over a wide bandwidth, can be achieved.
Abstract:
A multiple layer reflective polarizer (12) is described. This element is placed between an optical cavity (24) and an LCD module (16) to form an optical display. The reflective polarizer reflects some light into the optical cavity (24) where it is randomized and may ultimately emerge with the correct polarization to be transmitted out of the display.
Abstract:
An optical film is provided which exhibits increased gain at non-normal angles of incidence and which comprises a disperse phase of polymeric particles disposed within a continuous birefringent matrix. The film is oriented, typically by stretching, in one or more directions. The size and shape of the disperse phase particles, the volume fraction of the disperse phase, the film thickness, and the amount of orientation are chosen to attain a desired degree of diffuse reflection and total transmission of electromagnetic radiation of a desired wavelength in the resulting film.
Abstract:
An optical film is provided which comprises a disperse phase of polymeric particles disposed within a continuous birefringent matrix. The film is oriented, typically by stretching, in one or more directions. The size and shape of the disperse phase particles, the volume fraction of the disperse phase, the film thickness, and the amount of orientation are chosen to attain a desired degree of diffuse reflection and total transmission of electromagnetic radiation of a desired wavelength in the resulting film.