Abstract:
A terminal contact arrangement for a connector promotes reduction in deviation of the impedance of the connector when mated to an opposing connector and energized. The connector has an insulative housing with a plurality of terminal-receiving passages disposed in it. Conductive terminals are supported in some, but not all of the passages. The terminal contain distinct terminal sets that include a pair of differential signal terminals and at least two associated ground reference terminals. The two associated ground reference terminals are interconnected together so that electrically, they act as a single ground terminal having a width equal to the sum of the widths of the two connected ground reference terminals. The ground reference terminals of the sets are disposed in a single row of terminals, while the differential signal terminals of the same terminal set are disposed in another row of terminals spaced apart from the row of ground reference terminals. The differential signal terminals are separated from each other within their terminal row by an empty passage so that the two differential signal terminals of each terminal set are spaced farther apart from each other than they are spaced apart from their associated ground reference terminals.
Abstract:
A connector is provided that includes a housing and the housing supports a plurality of wafers. Each wafer supports a terminal and adjacent signal wafers are configured so as to provide broad-side coupled terminals. A pair of signal terminals can be surrounded on both sides by ground terminals that offer shielding so as to help isolate one signal pair from another signal pair. The geometry of the wafers can be adjusted so as to provide a tuned transmission channel. The resultant tuned transmission channel can be configured to provide desirable performance at high signaling frequencies of 12-16 GHz or even higher signaling frequencies such as 20 GHz.
Abstract:
A connector and circuit board assembly includes terminals in a connector that are mounted to vias in a circuit board. Signal and ground terminals are thus coupled to signal traces and ground planes in the circuit board. Additional pinning vias that are aligned with the ground vias may be provided in a circuit board to help improve electrical performance at the interface between the terminals in the connector and the signal traces in the circuit board. A signal collar may allow pairs of signal traces to be split and routed around two difference sides of a via before rejoining while maintaining close electrical proximity that provides for relatively consistent electrical coupling between the traces in the pair of signal traces.
Abstract:
A terminal contact arrangement for a connector promotes reduction in deviation of the impedance of the connector when mated to an opposing connector and energized. The connector has an insulative housing with a plurality of terminal-receiving passages disposed in it. Conductive terminals are supported in some, but not all of the passages. The terminal contain distinct terminal sets that include a pair of differential signal terminals and at least two associated ground reference terminals. The two associated ground reference terminals are interconnected together so that electrically, they act as a single ground terminal having a width equal to the sum of the widths of the two connected ground reference terminals. The ground reference terminals of the sets are disposed in a single row of terminals, while the differential signal terminals of the same terminal set are disposed in another row of terminals spaced apart from the row of ground reference terminals. The differential signal terminals are separated from each other within their terminal row by an empty passage so that the two differential signal terminals of each terminal set are spaced farther apart from each other than they are spaced apart from their associated ground reference terminals.
Abstract:
A circuit card is provided that includes ground traces that extend from a resistor to a commoning bar, where a resultant electrical length between the resistor and the commoning bar and is configured to reduce energy carried on the ground terminals that could otherwise result in cross-talk. In an embodiment, the ground trace may be configured in a meandering manner. In another embodiment, the ground trace may be split and joined by an inductor.
Abstract:
A connector is provided with a pair of terminals configured to provide a differential signal pair. A ground terminal is positioned on opposing sides of the differential pair. The body of the differential pair is configured so as to bring the differential pair closer together. In an embodiment, the % coupling on the differential pair is increase at least 10% more than a design where the four terminals are positioned at a constant pitch between the tail and the contact.
Abstract:
A shield for a connector that can provide a card-receiving slot is disclosed. The shield includes sides that provide an enclosure. The shield includes a fastener that is held in place by a retaining notch in a bottom of the shield. The retaining notch is configured to support the fastener in place and restrain it from unintended translation or rotation.
Abstract:
A terminal contact arrangement for a connector promotes reduction in deviation of the impedance of the connector when mated to an opposing connector and energized. The connector has an insulative housing with a plurality of terminal-receiving passages disposed in it. Conductive terminals are supported in some, but not all of the passages. The terminal contain distinct terminal sets that include a pair of differential signal terminals and at least two associated ground reference terminals. The two associated ground reference terminals are interconnected together so that electrically, they act as a single ground terminal having a width equal to the sum of the widths of the two connected ground reference terminals. The ground reference terminals of the sets are disposed in a single row of terminals, while the differential signal terminals of the same terminal set are disposed in another row of terminals spaced apart from the row of ground reference terminals. The differential signal terminals are separated from each other within their terminal row by an empty passage so that the two differential signal terminals of each terminal set are spaced farther apart from each other than they are spaced apart from their associated ground reference terminals.