Abstract:
A wireless system, which minimizes nulls within the wireless system, while simultaneously providing diversity. A wireless system will now have increased capacity and coverage due to an enhanced signal to interference ratio in the areas of beam overlap. The system uses time or frequency offset on the signals input to an antenna to minimize interference in the regions of beam overlap. Additionally, polarization diversity can be introduced using Butler Matrices in conjunction with array elements to enhance the interference reduction.
Abstract:
In order to increase a capacity, or a number of mobile stations (MSs), or users, that may engaged in concurrent communication sessions, a communication system is provided that schedules a different MS, or user, in each beam of multiple predetermined, fixed beams associated with a coverage area, in particular a sector. By simultaneously scheduling a user in each beam of the multiple beams, a performance and throughput of communication system is significantly increased over the prior art. In one embodiment of the present invention, a portion of a shared communication channel that is allocated to each MS is concurrently transmitted to each MS via a beam associated with the MS. In other embodiments of the present invention, voice channels, data channels, and control channels associated with each MS scheduled in a beam may be concurrently transmitted to each MS via the beam associated with the MS.
Abstract:
A RAKE receiver (112) includes a plurality of fingers (122, 124, 126, 128). Each finger includes a demodulator (402) for demodulating a ray of a multipath signal and a time tracking circuit (404) for controlling the time position of the finger in accordance with time position of the ray. A low delay-spread condition is detected and the positions of two adjacent fingers are controlled to prevent convergence of two or more fingers about a common time position. By maintaining finger timing separation, path diversity is exploited by the RAKE receiver even during the low delay-spread condition to improve receiver performance.
Abstract:
In order to increase a capacity, or a number of mobile stations (MSs), or users, that may engaged in concurrent communication sessions, a communication system is provided that schedules a different MS, or user, in each beam of multiple predetermined, fixed beams associated with a coverage area, in particular a sector. By simultaneously scheduling a user in each beam of the multiple beams, a performance and throughput of communication system is significantly increased over the prior art. In one embodiment of the present invention, a portion of a shared communication channel that is allocated to each MS is concurrently transmitted to each MS via a beam associated with the MS. In other embodiments of the present invention, voice channels, data channels, and control channels associated with each MS scheduled in a beam may be concurrently transmitted to each MS via the beam associated with the MS.
Abstract:
In order to increase a capacity, or a number of mobile stations (MSs), or users, that may engaged in concurrent communication sessions, a communication system is provided that schedules a different MS, or user, in each beam of multiple predetermined, fixed beams associated with a coverage area, in particular a sector. By simultaneously scheduling a user in each beam of the multiple beams, a performance and throughput of communication system is significantly increased over the prior art. In one embodiment of the present invention, a portion of a shared communication channel that is allocated to each MS is concurrently transmitted to each MS via a beam associated with the MS. In other embodiments of the present invention, voice channels, data channels, and control channels associated with each MS scheduled in a beam may be concurrently transmitted to each MS via the beam associated with the MS.
Abstract:
A method, a network base station, and a user communication device for transmitting data on an orthogonal frequency-division multiple access carrier are disclosed. A network base station 106 may have a common antenna set 110 to transmit on a subcarrier via a first effective channel able to be constructed based on at least one common reference symbol. The network base station 106 may have a dedicated antenna set 112 to transmit on a subcarrier via a second effective channel able to be estimated based on at least one dedicated reference symbol. The user equipment device 102 may demodulate a data transmission using the at least one common reference symbol and the at least one dedicated reference symbol.
Abstract:
In order to increase a capacity, or a number of mobile stations (MSs), or users, that may engage in concurrent communication sessions, a communication system (100) is provided that schedules a different MS, or user, (110-112) in each beam of multiple predetermined, fixed beams (160-165) associated with a coverage area, for example, a sector. By simultaneously scheduling a user in each beam of the multiple beams, a performance and throughput of communication system is significantly increased over the prior art. In one embodiment of the present invention, a portion of a shared communication channel that is allocated to each MS is concurrently transmitted to each MS via a beam associated with the MS. In other embodiments of the present invention, voice channels, data channels, and control channels associated with each MS scheduled in a beam may be concurrently transmitted to each MS via the beam associated with the MS.
Abstract:
A wireless system (30) minimizes nulls within the wireless system while simultaneously providing diversity. The system uses time or frequency offset on signals input to an antenna (40, 50, 60, 100) to minimize interference in regions of beam overlap. Additionally, polarization diversity can be introduced using Butler Matrices (69, 70) in conjunction with array elements (102-128) to enhance the interference reduction. As a result, the wireless system has increased capacity and coverage due to an enhanced signal to interference ratio in the areas of beam overlap (O1-O3).
Abstract:
A wireless system (30) minimizes nulls within the wireless system while simultaneously providing diversity. The system uses time or frequency offset on signals input to an antenna (40, 50, 60, 100) to minimize interference in regions of beam overlap. Additionally, polarization diversity can be introduced using Butler Matrices (69, 70) in conjunction with array elements (102-128) to enhance the interference reduction. As a result, the wireless system has increased capacity and coverage due to an enhanced signal to interference ratio in the areas of beam overlap (O1-O3).