Abstract:
A power source (201) and a printed transistor circuit (202) are combined with one another in a stacked and integral configuration. In a preferred though optional configuration this combination can further comprise a substrate (200) of choice. The power source can comprise a technology of choice such as, but not limited, to, a battery or a photovoltaic element. These elements can be combined (104) using a joining technology of choice such as, but not limited to, laminating these elements together or printing one upon the other.
Abstract:
Data regarding printing instructions for an active electronic component are provided (11). These printing instructions will typically comprise instructions regarding the location, geometry, size, orientation, and functional inks used for various component layers as correspond to the electronic component, and are without reference to a specific printing system. This data is then modified (12) as a function of one or more operational proclivities of a particular high throughput additive printing system to provide modified instructions that, when employed to effect the printing of the active electronic component, will improve the resultant yield as compared to the unmodified data.
Abstract:
One facilitates determination of a path that comprises a plurality of specific locations (Fig 1, Bl 101). in an optional though preferred embodiment these specific locations comprise locations where a given functional ink will preferably be printed using a continuous printing spray. Also in an optional though preferred embodiment this path will also avoid at least one predetermined area (Fig 1. Bl 102) where such a functional ink should not be printed. In a preferred approach this process generally provides for identifying these specific locations and further identifying, when applicable, the one or more predetermined areas to be avoided. This process then preferably uses a processor to effect at least one (and preferably both) of using a genetic algorithm to identify a preferred path that includes the plurality of specific locations and using an A* algorithm to process a candidate path to provide a selected path that includes the plurality of specific locations while also avoiding the at least one predetermined area (Fig 1, Bl 104).
Abstract:
An organic semiconductor product state monitor attached to a product receives a product usefulness input, which, along with the product predetermined usefulness limit, is used to determine an indicator command to indicate a state of usefulness of the product. An organic circuit is formed and placed on a product with a power supply to control the circuit operation.
Abstract:
The present invention (Figure 1) is directed to semiconductor films and a process for their preparation. In accordance with the process of the present invention, semiconductor organic material is blended with a multi-component solvent blend and the blend is deposited on a receiving material to provide a continuous highly ordered film having greater periodicity than films produced with a single solvent/semiconducting material blend under similar processing conditions.
Abstract:
A semiconductor device made on a polymer substrate (10) using graphic arts printing technology uses a printable organic semiconductor. An electrode (14) is situated on the substrate (10), and a dielectric layer (20) is situated over the electrode (14). Another electrode(s) (25, 26) is situated on the dielectric layer (20). The exposed surfaces of the dielectric (20) and the top electrode (25, 26) are treated with a reactive silane to alter the surface of the electrode (25, 26) and the dielectric (20) sufficiently to allow an overlying organic semiconductor layer to have good adhesion to both the electrode (25, 26) and the dielectric (20). In various embodiments, the electrodes (14, 25, 26) may be printed, and the dielectric layer (20) may also be printed.
Abstract:
An energizable design image portion (203) of a provided design pattern is printed on a provided substrate (201) using a functional ink comprised of at least one energy emissive material. A passive design image portion (202) of that design pattern is then also printed on that substrate using at least one graphic arts ink. In a preferred embodiment this apparatus may further comprise electrically conductive electrodes (204) on the substrate to permit selective energization of the energy emissive material to thereby induce illumination of the energizable design image portion of the design pattern.
Abstract:
An energizable design image portion of a provided design pattern (101) is printed (103) on a provided substrate (101) using a functional ink comprised of at least one energy emissive material. A passive design image portion of that design pattern is then also printed (104) on that substrate using at least one graphic arts ink. In a preferred embodiment this process (100) further provides for printing (105) electrically conductive electrodes on the substrate to permit selective energization of the energy emissive material to thereby induce illumination of the energizable design image portion of the design pattern.
Abstract:
An object (201) (such as a containment mechanism) supports both a functional electrical circuit (203) and an electrical circuit (202) to which the functional electrical circuit is responsive. In a preferred approach the functional electrical circuit has both a low power state of operation and a higher power state of operation. Upon detecting (104) that an area of connectivity of the electrical circuit has been severed (via, for example, corresponding manipulation of the object itself), the functional electrical circuit responsively operates (106) using the higher power state of operation.
Abstract:
A semiconductor device (20, 20A, 20B) can be comprised of a substrate (21) having a plurality of different printable semiconductor inks formed thereon (26, 26A, 26B). In a preferred approach at least some of these printable semiconductor inks comprise organic semiconductor material inks. These semiconductor inks can vary from one another with respect to various properties including but not limited to electrical characteristics and environmental efficacy.